作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将高分辨率遥感图像进行像素级海陆分割是遥感应用领域的一项基础性工作,对海岸线提取和海洋近岸目标检测具有重要意义,但传统阈值方法往往由于高分辨率遥感图像覆盖范围广、地物纹理复杂等特点而难以取得预期效果.为了提升高分辨率遥感影像海陆分割精度,改善传统阈值方法的不足,基于深度神经网络模型利用编码器—解码器架构,并在编码层中引入残差块,以更好地对特征图进行高级语义信息提取,通过解码层将编码层生成的特征图还原成与输入尺寸相同的特征图,最后通过Sigmoid层对图像进行像素级海陆分割.在高分辨率遥感图像数据集上的实验结果表明,该网络模型取得良好了分割效果,准确率和Kappa系数分别达到了94.3%和93.7%.与传统方法相比,海陆分割精确度得到了有效提升.
推荐文章
一种快速高分辨率遥感影像分割算法
高分辨率
遥感影像
分割
区域合并
梯度
分水岭
基于深度学习的高分辨率 遥感影像建筑物提取
遥感影像;
建筑物提取;
多尺度;
深度学习
面向对象特征融合的高分辨率遥感图像变化检测方法
面向对象
图像分割
尺度
光谱特征
纹理特征
形状特征
基于模糊形态学梯度的高分辨率遥感影像分割方法
模糊形态学梯度
颜色量化
分水岭变换
高分辨率遥感影像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的高分辨率遥感图像海陆分割方法
来源期刊 软件导刊 学科 工学
关键词 深度学习 高分辨率遥感图像 海陆分割 深度神经网络 编码—解码架构
年,卷(期) 2020,(3) 所属期刊栏目 人工智能
研究方向 页码范围 95-98
页数 4页 分类号 TP301
字数 2784字 语种 中文
DOI 10.11907/rjdk.192771
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 崔昊 山东科技大学计算机科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (113)
共引文献  (27)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(11)
  • 参考文献(1)
  • 二级参考文献(10)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(17)
  • 参考文献(0)
  • 二级参考文献(17)
2017(14)
  • 参考文献(2)
  • 二级参考文献(12)
2018(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
高分辨率遥感图像
海陆分割
深度神经网络
编码—解码架构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导