基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的命名实体识别方法依赖大量的人工选择的特征和专业领域的外部知识,针对这一问题,提出了一种新颖的神经网络结构,该算法结合了双向LSTM,CNN和CRF可以同时自动获取到基于字符级别和词语级别的表示,是一种真正意义上的端到端的结构,不再需要人工选择特征和数据的预处理,可以应用到各个领域的命名实体识别任务中去.最后,通过实验证明该算法在医疗领域和新闻领域的F1值分别达到了90.97%和92.19%.
推荐文章
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
基于E-CNN和BLSTM-CRF的临床文本命名实体识别
命名实体识别
临床文本
集成的卷积神经网络
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BLSTM-CNN-CRF的中文命名实体识别方法
来源期刊 哈尔滨理工大学学报 学科 工学
关键词 命名实体识别 长短期记忆网络 卷积神经网络 条件随机场
年,卷(期) 2020,(1) 所属期刊栏目 电气与电子工程
研究方向 页码范围 115-120
页数 6页 分类号 TP391.1
字数 4502字 语种 中文
DOI 10.15938/j.jhust.2020.01.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘宇鹏 哈尔滨理工大学软件与微电子学院 9 63 4.0 7.0
2 栗冬冬 哈尔滨理工大学软件与微电子学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (50)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(1)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
命名实体识别
长短期记忆网络
卷积神经网络
条件随机场
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨理工大学学报
双月刊
1007-2683
23-1404/N
大16开
哈尔滨市学府路52号
14-130
1979
chi
出版文献量(篇)
3951
总下载数(次)
6
总被引数(次)
23102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导