作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-means聚类算法具有实现简单、普及性强的优势,但存在聚类中心选取随意性强的劣势.文章提出增加一个密度变量的方式来选出合理的初始聚类中心,通过对校园网上热点话题聚类分析的实验,检验出改进K-means聚类算法聚类效果好.
推荐文章
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于改进BA算法的K-means聚类
蝙蝠算法
莱维飞行
惯性权重
limit阈值
K-means算法
基于Kd树改进的高效K-means聚类算法
k-means算法
簇心
kd树
剪枝策略
CK-means算法
改进K-means的空间聚类算法
空间数据库
R-link树
四叉树
空间聚类
空间索引
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 K-means聚类算法的改进与应用
来源期刊 太原师范学院学报(自然科学版) 学科 工学
关键词 K-means算法 密度 聚类中心
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 81-83
页数 3页 分类号 TP301
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘建花 11 16 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (66)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means算法
密度
聚类中心
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太原师范学院学报(自然科学版)
季刊
1672-2027
14-1304/N
大16开
山西省太原市
2002
chi
出版文献量(篇)
2334
总下载数(次)
5
总被引数(次)
6383
论文1v1指导