基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统电池荷电状态(SOC)估计中常用的扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)方法仅适用于线性系统和高斯条件,虽然粒子滤波(PF)算法能用于非线性和非高斯系统,但PF算法在滤波更新时存在粒子退化现象,使粒子集无法表示实际后验概率分布,导致估计精度降低.采用改进的扩展粒子滤波(EPF)和无迹粒子滤波(UPF)算法对电池SOC进行估计,抑制了粒子权重退化.以Thevenin模型对电池进行建模,利用带遗忘因子的最小二乘方法进行模型参数辨识,结合改进后的滤波算法对电池SOC进行估计.实验结果表明,以UKF为建议密度函数进行重采样的UPF方法平均估计误差为0.71%,低于以EKF为建议密度函数的EPF方法平均误差(1.09%),两种方法的估计误差均小于PF估计误差(1.36%),有效抑制了粒子权重退化.
推荐文章
基于权值选择粒子滤波算法的锂离子电池SOC估计
Thevenin 模型
在线参数辨识
SOC 估计
权值选择粒子滤波算法
等效滞回模型在锂离子电池SOC估计中的应用
锂离子电池
荷电状态
滞回模型
容积卡尔曼滤波
双自适应衰减卡尔曼滤波锂电池荷电状态估计
锂离子电池
荷电状态
自适应卡尔曼滤波
扩展卡尔曼滤波
双自适应
锂离子电池状态估计与剩余寿命预测方法综述
锂离子电池
荷电状态(SOC)估算
健康度(SOH)估算
剩余寿命(RUL)预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进粒子滤波算法的动力锂离子电池荷电状态估计
来源期刊 大连理工大学学报 学科 工学
关键词 锂离子电池 荷电状态 等效电路模型 参数辨识 粒子滤波 卡尔曼滤波
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 392-401
页数 10页 分类号 TM912
字数 6046字 语种 中文
DOI 10.7511/dllgxb202004008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘淑杰 大连理工大学机械工程学院 10 24 4.0 4.0
2 王永 大连理工大学机械工程学院 4 22 3.0 4.0
3 郝昆昆 大连理工大学机械工程学院 1 0 0.0 0.0
4 邓威威 大连理工大学机械工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (30)
参考文献  (24)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(4)
  • 参考文献(4)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
锂离子电池
荷电状态
等效电路模型
参数辨识
粒子滤波
卡尔曼滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连理工大学学报
双月刊
1000-8608
21-1117/N
大16开
大连市理工大学出版社内
8-82
1950
chi
出版文献量(篇)
3166
总下载数(次)
3
论文1v1指导