原文服务方: 西安交通大学学报       
摘要:
针对卡尔曼滤波法在锂离子电池荷电状态(SOC)估计时存在误差较大、收敛较慢等问题,提出了一种双自适应衰减扩展卡尔曼滤波荷电状态估计(DAFEKF)算法.该算法首先设计了针对动力电池的荷电状态估计观测器,利用测得的电流和电压值分别作为观测器的输入和观测值,结合双自适应衰减扩展卡尔曼滤波估计出观测器中的电池荷电状态,在卡尔曼滤波算法的基础上加入时变衰减因子来减弱过去数据对当前滤波值的影响,并自适应地调整卡尔曼算法中过程噪声和测量噪声协方差.利用DAFEKF算法估计出的SOC结果与扩展卡尔曼滤波(EKF)和自适应扩展卡尔曼滤波(AEKF)算法进行了比较,结果表明,DAFEKF方法具有较好的准确性、鲁棒性和收敛性,使SOC估计误差控制在2%以内.
推荐文章
小波降噪卡尔曼滤波锂电池荷电状态估计
离散小波变换
降噪
荷电状态
扩展卡尔曼滤波算法
基于核极限学习机与容积卡尔曼滤波融合的锂电池荷电状态估计
锂离子电池
荷电状态估计
卡尔曼滤波
核极限学习机
锂电池分数阶建模与荷电状态研究
锂电池
分数阶阻抗模型
分数阶卡尔曼滤波器
荷电状态估算
18650型锂电池荷电状态的估计
锂电池
荷电状态
神经网络
k-均值
联合仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 双自适应衰减卡尔曼滤波锂电池荷电状态估计
来源期刊 西安交通大学学报 学科
关键词 锂离子电池 荷电状态 自适应卡尔曼滤波 扩展卡尔曼滤波 双自适应
年,卷(期) 2018,(12) 所属期刊栏目
研究方向 页码范围 99-105
页数 7页 分类号 TM912.8
字数 语种 中文
DOI 10.7652/xjtuxb201812015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (53)
参考文献  (14)
节点文献
引证文献  (8)
同被引文献  (17)
二级引证文献  (3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(6)
  • 参考文献(2)
  • 二级参考文献(4)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(5)
  • 二级引证文献(0)
2020(5)
  • 引证文献(2)
  • 二级引证文献(3)
研究主题发展历程
节点文献
锂离子电池
荷电状态
自适应卡尔曼滤波
扩展卡尔曼滤波
双自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
论文1v1指导