基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为实现铁路车站发送客流量的短期预测,研究预测步长对短期客流预测效果的影响,分析了广珠城际铁路车站发送客流的特征和变化规律,结合客流特征及季节性差分自回归滑动平均模型(seasonal autoregressive integrated moving average,SARIMA)的适用性,构建了SARIMA客流预测模型,利用Python软件中的Statsmodels模块完成了SARIMA客流模型的精细化调参,以广州南站、小榄站的发送客流量为例验证了模型的有效性.结果表明,SARIMA预测模型可以较好地适用于不同数量等级的客流预测,其预测精度随预测步长的增加而降低.预测步长为1时,广州南站、小榄站、珠海站客流预测平均绝对百分比误差(mean absolute percentage error,MAPE)值分别为3.97%,5.83%,5.43%;预测步长增加为2时,各车站客流预测误差显著增加,广州南站、小榄站、珠海站客流预测误差MAPE值分别为5.31%,6.79%,7.62%;预测步长大于2时,预测误差基本保持稳定.将SARIMA模型预测效果与随机森林(random forest,RF)、支持向量机(support vector machine,SVM)、梯度提升算法(gradient boosting,GB)、K最近邻算法(K-nearest neighbor,KNN)模型或方法的预测效果进行对比,预测步长为1时,SARIMA模型预测效果略优于其余4种模型,5种预测模型预测精度差距较小;预测步长大于1时,RF、SVM、GB、KNN模型预测误差随预测步长显著增加,预测误差为SARIMA模型的数倍.SARIMA模型在客流时间序列的多步预测方面具有较大的优势.
推荐文章
基于BP神经网络的机场安检旅客流量预测模型
机场
安检旅客流量
BP神经网络
预测
服务资源
调度
基于多因素稀疏回归预测模型的商家客流量预测
智能商业平台
客流量预测
稀疏回归
多因素分析
字典学习
基于ARMA模型的城市轨道交通客流量预测
客流量
预测模型
时间序列
相对误差
旅游客流量预测:基于季节调整的PSO-SVR模型研究
旅游客流量预测
粒子群算法
支持向量回归机
季节调整
均方差比较
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SARIMA模型的广珠城际铁路客流量预测
来源期刊 西南交通大学学报 学科 交通运输
关键词 铁路运输 SARIMA模型 广珠城际铁路 车站发送客流 客流预测
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 41-51
页数 11页 分类号 U293.4
字数 6221字 语种 中文
DOI 10.3969/j.issn.0258-2724.20180617
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭其渊 西南交通大学交通运输与物流学院 258 3785 32.0 47.0
5 杨宇翔 西南交通大学交通运输与物流学院 8 42 2.0 6.0
6 李洁 西南交通大学交通运输与物流学院 12 79 6.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (79)
共引文献  (81)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(16)
  • 参考文献(2)
  • 二级参考文献(14)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(6)
  • 参考文献(4)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(3)
  • 参考文献(0)
  • 二级参考文献(3)
2020(4)
  • 参考文献(0)
  • 二级参考文献(4)
2020(4)
  • 参考文献(0)
  • 二级参考文献(4)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
铁路运输
SARIMA模型
广珠城际铁路
车站发送客流
客流预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西南交通大学学报
双月刊
0258-2724
51-1277/U
大16开
四川省成都市二环路北一段
62-104
1954
chi
出版文献量(篇)
3811
总下载数(次)
4
总被引数(次)
51589
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导