作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对于雷达高分辨距离像的识别问题,传统深层网络通常忽略了HRRP自身的目标特性,不利于学习有效的分类特征,导致其识别性能受到限制.针对这一问题,本文提出了一种基于稳健变分自编码模型的目标识别算法.该算法结合HRRP数据特性,利用平均像在散射点不发生越距离单元走动的方位帧内具有稳健物理特性的性质,基于变分自编码器构建了稳健变分自编码模型.该模型不仅能够获取稳健有效的识别特征,而且在一定程度上保存了数据的帧内结构信息,较大地提高了目标的平均识别率.基于实测HRRP数据验证了所提算法的有效性.
推荐文章
基于改进高斯核函数的雷达高分辨距离像目标识别算法研究
高分辨距离像
支持向量机
高斯核函数
广义高斯分布
基于深度置信网络的高分辨率雷达距离像识别
深度置信网络
高分辨距离像
重构误差
目标识别
基于支持向量机的雷达高分辨距离像识别
支持向量机
高分辨距离像
雷达目标识别
匹配相关法
基于模糊超球面SVM的雷达高分辨距离像识别
超球面支持向量机
高分辨距离像
隶属度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稳健变分自编码模型的雷达高分辨距离像目标识别算法
来源期刊 电子学报 学科 工学
关键词 雷达自动目标识别 高分辨距离像 特征提取 稳健变分自编码模型
年,卷(期) 2020,(6) 所属期刊栏目 学术论文
研究方向 页码范围 1149-1155
页数 7页 分类号 TN95
字数 4620字 语种 中文
DOI 10.3969/j.issn.0372-2112.2020.06.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈渤 西安电子科技大学雷达信号处理国家重点实验室 16 204 9.0 14.0
2 翟颖 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (15)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
雷达自动目标识别
高分辨距离像
特征提取
稳健变分自编码模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
论文1v1指导