基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深度确定性策略梯度算法存在的经验利用率不高和性能差的问题,提出一种基于深度确定性策略梯度算法的复合优先经验回放算法.利用样本的立即回报和基于样本时间差分误差分别构建优先级对样本排序,随后对经验进行复合平均排序并基于排序优先性机制求得优先级对经验采样,使用得到的样本训练学习网络.在仿真环境中进行的对比实验表明:与深度确定性策略梯度算法和基于时间差分误差的深度确定性策略梯度算法相比,该方法能够减少训练的时间、提高系统的学习能力.
推荐文章
优化深度确定性策略梯度算法
强化学习
深度学习
连续动作控制
机器臂
高程梯度性质和算法不确定性的初步分析
高程梯度
高程梯度算法
统计分布
算法稳定性
一类优化问题的确定性算法
线性比式和
全局优化
确定性算法
线性化技术
基于深度确定性策略梯度的智能车汇流模型
智能车
汇流
深度确定性策略梯度
深度Q网络
连续动作空间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度确定性策略梯度算法优化
来源期刊 辽宁工程技术大学学报(自然科学版) 学科
关键词 强化学习 深度确定性策略梯度 复合优先经验回放 立即回报 时间差分误差
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 545-549
页数 5页 分类号 TP18
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (109)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
强化学习
深度确定性策略梯度
复合优先经验回放
立即回报
时间差分误差
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁工程技术大学学报(自然科学版)
月刊
1008-0562
21-1379/N
大16开
辽宁省阜新市
1979
chi
出版文献量(篇)
6319
总下载数(次)
12
总被引数(次)
52708
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导