基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电能质量扰动识别时特征提取不充分和人工提取特征值困难较大,造成最终识别精度不高的问题,本文基于对样本数据进行深度学习提出一种采用卷积神经网络(convolutional neural network,CNN)的电能质量扰动分类算法.文中利用CNN从原始扰动图像中自适应地提取特征并加以分类,同时就三种优化器Adam、Rmsprop、SGD在卷积神经网络中对电能质量扰动进行分类,仿真结果表明Adam、Rmsprop在卷积神经网络中对电能质量扰动识别分类效果要优于SGD.Adam和Rmsprop这两种优化器在电能质量扰动分类中识别速度快,精度高,鲁棒性强.
推荐文章
基于粒子群优化与卷积神经网络的电能质量 扰动分类方法
新能源
电能质量
扰动分类
特征提取
粒子群优化(PSO)
深度学习
卷积神经网络(CNN)
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的电能质量扰动识别研究
来源期刊 湖北民族大学学报(自然科学版) 学科 工学
关键词 卷积神经网络 优化器 电能质量扰动 特征值
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 318-321,327
页数 5页 分类号 TM761
字数 语种 中文
DOI 10.13501/j.cnki.42-1908/n.2020.09.015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (107)
共引文献  (198)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(15)
  • 参考文献(1)
  • 二级参考文献(14)
2016(14)
  • 参考文献(1)
  • 二级参考文献(13)
2017(14)
  • 参考文献(2)
  • 二级参考文献(12)
2018(10)
  • 参考文献(2)
  • 二级参考文献(8)
2019(5)
  • 参考文献(1)
  • 二级参考文献(4)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
优化器
电能质量扰动
特征值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖北民族大学学报(自然科学版)
季刊
2096-7594
42-1908/N
大16开
湖北省恩施市三孔桥湖北民族学院学报编辑部
1982
chi
出版文献量(篇)
2388
总下载数(次)
3
总被引数(次)
8743
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导