作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对齿轮箱故障振动信号的不平稳非线性冲击行为,本文提出了一种基于经验模态分解的特征值提取及多特征支持向量机的智能诊断方法.在电机频率分别取30 Hz、35 Hz、40 Hz;载荷分别取0 N?M、15 N?M、30 N?M;采样频率为1500 Hz条件下,进行齿轮正常状态、齿面磨损和齿轮裂痕故障模拟实验.试验结果表明:该创新方法在有限样本数据分析中可以准确、有效地对齿轮箱的工作状态和故障类型进行分类,且支持向量机在故障诊断中使用方便,可以提高诊断的精确性,在齿轮箱故障诊断或类似振动信号的检测应用中具有很强的实用性.
推荐文章
基于EMD分解和支持向量机的齿轮箱故障诊断与研究
齿轮箱
故障诊断
EMD
支持向量机
基于小波包分解和EMD-SVM的轴承故障诊断方法
故障诊断
小波包分解
轴承
支持向量机
基于支持向量机的混合电路故障诊断
支持向量机
混合电路
故障诊断
动态电流
一种改进的基于RS与SVM的故障诊断方法
粗糙集
支持向量机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于EMD与多特征支持向量机(SVM)故障诊断方法
来源期刊 现代科学仪器 学科 工学
关键词 齿轮箱 EMD SVM支持向量机 故障诊断
年,卷(期) 2020,(1) 所属期刊栏目 实验室建设
研究方向 页码范围 86-89
页数 4页 分类号 TP206+.3
字数 2486字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李明臻 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (220)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
齿轮箱
EMD
SVM支持向量机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代科学仪器
双月刊
1003-8892
11-2837/TH
大16开
北京海淀区西三环北路27号理化实验楼512室
1984
chi
出版文献量(篇)
4906
总下载数(次)
12
总被引数(次)
20682
论文1v1指导