基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,特征选择在机器学习领域中应用十分广泛.为提高文本计算效率,改善数据分类性能,提出两步法解决特征选择问题.结合过滤式中CEA算法和封装式中Boruta算法,引入参数p控制Boruta算法中阴影部分比例,提高封装阶段效率,降低整体算法时间复杂度,筛选出较优的候选特征集.在三个数据集上利用随机森林分类器进行实验,结果表明,该算法在平均分类错误率,召回率,准确率和F1值上均优于传统的Boruta和CEA算法,能够有效地减少最终选择的特征子集中的特征数量,提高文本分类效率和预测性能.
推荐文章
改进Boruta算法在特征选择中的应用
特征选择
Boruta
机器学习
阴影特征
混合比例
基于filter+wrapper模式的特征选择算法
信息增益率
随机森林
特征选择
filter模式
wrapper模式
基于遗传算法的特征子集选择方法
数据挖掘
特征子集选择
遗传算法
人工智能
基于遗传算法的入侵检测特征选择
入侵检测
特征选择
偏F检验
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CEA+Boruta模式的特征选择算法
来源期刊 湖北民族大学学报(自然科学版) 学科 工学
关键词 特征选择 降维 Boruta CEA 机器学习
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 349-354
页数 6页 分类号 TP301
字数 语种 中文
DOI 10.13501/j.cnki.42-1908/n.2020.09.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (187)
共引文献  (48)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1931(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(11)
  • 参考文献(0)
  • 二级参考文献(11)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(17)
  • 参考文献(0)
  • 二级参考文献(17)
2015(19)
  • 参考文献(1)
  • 二级参考文献(18)
2016(20)
  • 参考文献(0)
  • 二级参考文献(20)
2017(22)
  • 参考文献(1)
  • 二级参考文献(21)
2018(17)
  • 参考文献(4)
  • 二级参考文献(13)
2019(12)
  • 参考文献(7)
  • 二级参考文献(5)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征选择
降维
Boruta
CEA
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖北民族大学学报(自然科学版)
季刊
2096-7594
42-1908/N
大16开
湖北省恩施市三孔桥湖北民族学院学报编辑部
1982
chi
出版文献量(篇)
2388
总下载数(次)
3
总被引数(次)
8743
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导