基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在智能交通领域使用深度学习的方法进行目标检测已成为研究热点.当下经典的目标检测算法,无论是基于回归的单阶目标检测模型还是基于候选区域的二阶段目标检测模型,大部分是利用大量预定义的先验框anchor枚举可能的位置、尺寸和纵横比的方法来搜索对象,往往会造成正负样本严重不均衡的问题,模型的性能和泛化能力也受到anchor自身设计的限制.针对基于anchor的目标检测算法存在的问题,利用单阶目标检测网络RetinaNet,对交通场景中的车辆、行人和骑行者建立基于anchor-free的目标检测模型,采用逐像素预测的方式处理目标检测问题,并添加中心性预测分支,提升检测性能.实验表明,与基于anchor的原RetinaNet算法相比,改进的基于anchor-free的目标检测模型算法能够对交通场景中的车辆、行人、骑行者实现更好的识别.
推荐文章
复杂大交通场景弱小目标检测技术
机器视觉
深度学习
神经网络
交通场景多目标检测
增强学习
自适应
交通场景中多目标的检测与跟踪
目标检测
最近邻法
跟踪
匹配
基于深度学习方法的复杂场景下车辆目标检测
深度学习
Faster R-CNN
ImageNet数据集
车辆目标检测
基于SA-YOLOv5 的交通标志目标检测研究
目标检测
交通标志识别
注意力机制
YOLOv5
嵌入式系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于anchor-free的交通场景目标检测技术
来源期刊 计算机工程与科学 学科 工学
关键词 智能交通 深度学习 RetinaNet anchor-free
年,卷(期) 2020,(4) 所属期刊栏目 图形与图像
研究方向 页码范围 707-713
页数 7页 分类号 TP391.4
字数 5540字 语种 中文
DOI 10.3969/j.issn.1007-130X.2020.04.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孔薇 上海海事大学信息工程学院 30 46 3.0 4.0
2 孙作雷 上海海事大学信息工程学院 24 61 4.0 6.0
3 葛明进 上海海事大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (53)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能交通
深度学习
RetinaNet
anchor-free
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导