针对极限学习机在高维度、含噪声数据集中需要大量隐含层节点来保证分类性能的问题,设计了镜像极限学习机.该算法使用伪逆法确定输入权值,随机生成输出权值和偏置,在对数据进行分类时,它仅需极少的隐含层节点.为了提升镜像极限学习机的分类性能和抗噪性,将它与去噪自编码器相结合.利用去噪自编码器对输入数据进行特征提取,并将提取到的特征作为镜像极限学习机的输入数据,再进行网络训练.在无噪和含噪声的MNIST,Fashion M NIST,Rectangles和Convex数据集中,将基于去噪自编码器的镜像极限学习机与ELM,PCA-ELM,SAA-2和DAE-ELM作对比实验,结果表明,基于去噪自编码器的镜像极限学习机的综合性能最优,用于分类的网络隐含层节点数最少.