基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
结合领域内知识的个性化推荐算法在近年来受到了广泛关注,许多研究工作尝试将商品之间的关系(如互补关系等)融入到推荐算法中.对于商家而言,了解商品互补的关系能够帮助他们更好地制定定价策略;对于推荐算法而言,结合商品关系的推荐也更有可能生成令人满意的结果,因此,如何挖掘商品间的互补关系是一个很有意义的研究问题.现有方法大多从用户历史中的“共同购买”发掘商品的互补关系,但是由于真实的购买场景非常复杂,得到的很可能仅仅是共现关系而不是互补关系.借鉴经济学的相关研究,提出了商品潜在互补性发现推荐模型(latent complementarity discovery model,简称LCDM),试图从另一角度更准确地刻画商品间关系.首先,基于经济学理论中的需求交叉弹性(cross-price elasticity of demand),提出互补性发现模型(complementarity discovery model,简称CDM)联合商品价格与购买历史来挖掘商品间的互补关系.在用户标注任务中,所提算法较已有方法在用户标注的一致性上提升了10.6%.随后,基于此提出了融合商品互补关系的双重注意力机制推荐模型LCDM.最后,在真实数据集上的对比实验结果表明,提出的LCDM推荐模型能够显著改善推荐的效果,在Recall@5和NDCG@5上分别有54.5%和125.8%的提升,验证了所提方法的有效性.
推荐文章
人工心理模型在个性化商品推荐系统中的应用
人工智能
推荐系统
数量化Ⅰ类理论
人工心理
个性化
基于潜在标签挖掘和细粒度偏好的个性化标签推荐
个性化标签推荐
潜在标签挖掘
贝叶斯个性化排序
成对交互张量分解
一种基于社区发现的微博个性化推荐算法
微博推荐算法
用户模型
社区发现
效用函数
大数据个性化推荐分析
大数据
个性化推荐
兴趣爱好
推荐算法
协同过滤
混合推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合商品潜在互补性发现的个性化推荐方法
来源期刊 软件学报 学科 工学
关键词 推荐系统 表示学习 商品关系 计算经济学
年,卷(期) 2020,(4) 所属期刊栏目 非经典条件下的机器学习方法专题
研究方向 页码范围 1090-1100
页数 11页 分类号 TP391
字数 8448字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐系统
表示学习
商品关系
计算经济学
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导