原文服务方: 计算机应用研究       
摘要:
针对协同推荐技术存在的数据稀疏性和恶意评价行为等问题,提出了一种新颖的基于社会网络的协同过滤推荐算法。该方法借助社会网络分析技术对协同推荐方法加以改进,结合用户信任关系与用户自身兴趣,通过计算网络节点的可信度来消减虚假评分或恶意评分给推荐系统带来的负面影响,从而提高了推荐系统的准确度。实验表明,相对于传统的协同过滤算法,该算法可以有效缓解用户评分稀疏性及恶意评价行为带来的问题,显著提高推荐系统的推荐质量。
推荐文章
基于个性化特征的协同过滤推荐算法
个性化特征
协同过滤推荐
评分模型
项目属性
融合标签传播和信任扩散的个性化推荐方法
推荐系统
标签传播
大社区
扩散算法
信任网络
基于位置社交网络的个性化兴趣点推荐
兴趣点推荐
位置信息
分类信息
流行度信息
社会信息
位置社交网络
大数据个性化推荐分析
大数据
个性化推荐
兴趣爱好
推荐算法
协同过滤
混合推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合社会网络与信任度的个性化推荐方法研究
来源期刊 计算机应用研究 学科
关键词 社会网络 声望 可信度 因子分解 协同过滤
年,卷(期) 2014,(3) 所属期刊栏目 系统应用开发
研究方向 页码范围 808-810
页数 3页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2014.03.041
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (132)
参考文献  (4)
节点文献
引证文献  (17)
同被引文献  (44)
二级引证文献  (47)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(5)
  • 引证文献(5)
  • 二级引证文献(0)
2016(7)
  • 引证文献(4)
  • 二级引证文献(3)
2017(12)
  • 引证文献(2)
  • 二级引证文献(10)
2018(16)
  • 引证文献(4)
  • 二级引证文献(12)
2019(18)
  • 引证文献(0)
  • 二级引证文献(18)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
社会网络
声望
可信度
因子分解
协同过滤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导