基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多标记学习降维方法在实际应用问题中用以处理特征,标记或二者维度较高的数据集,已成为研究热点;针对目前多标记学习降维方法数量众多,种类繁杂而导致缺乏科学分类的问题,从多标记数据降维空间选择的角度,提出将多标记学习降维方法按照特征空间降维,标记空间降维和二者均降维的形式归纳为三类,其中特征空间降维又分为特征降维和特征选择两类问题,分别从独立于和依赖于彼此空间的角度对已有的40余篇文献中的典型多标记学习降维算法的研究现状进行了综述;最后,总结了多标记学习降维方法的研究现状和启示,并提出了未来进一步的研究方向.
推荐文章
高维数据特征降维研究综述
降维
机器学习
特征选择
特征抽取
评估准则
多标记学习研究综述
多标记学习
机器学习
问题转换
算法改进
评估措施
基于改进粒子群优化的无标记数据鲁棒聚类算法
多目标粒子群优化
聚类算法
鲁棒性
帕累托最优解
无标记数据
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多标记数据的特征及标记降维方法综述
来源期刊 重庆工商大学学报(自然科学版) 学科 工学
关键词 多标记学习 特征 标记 降维
年,卷(期) 2020,(5) 所属期刊栏目
研究方向 页码范围 23-29
页数 7页 分类号 TP181
字数 语种 中文
DOI 10.16055/j.issn.1672-058X.2020.0005.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张辉宜 59 410 11.0 18.0
2 张平照 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多标记学习
特征
标记
降维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆工商大学学报(自然科学版)
双月刊
1672-058X
50-1155/N
16开
重庆市南岸区学府大道21号
1983
chi
出版文献量(篇)
3397
总下载数(次)
6
总被引数(次)
14776
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导