基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 随着遥感影像空间分辨率的提升,相同地物的空间纹理表现形式差异变大,地物特征更加复杂多样,传统的变化检测方法已很难满足需求.为提高高分辨率遥感影像的变化检测精度,尤其对相同地物中纹理差异较大的区域做出有效判别,提出结合深度学习和超像元分割的高分辨率遥感影像变化检测方法.方法 将有限带标签数据分割成切片作训练样本,按照样本形式设计一个多切片尺度特征融合网络并对其训练,获得测试图像的初步变化检测结果;利用超像元分割算法将测试图像分割成许多无重叠的同质性区域,并将分割结果与前述检测结果叠合,得到带分割标记的变化检测结果;用举手表决算法统计带分割标记的变化检测结果中超像元的变化状况,得到最终变化检测结果.结果 在变化检测实验结果中,本文提出的多切片尺度特征融合卷积网络模型在广东数据集和香港数据集上,优于单一切片尺度下卷积神经网络模型,并且结合超像元的多切片尺度特征融合卷积网络模型得到的Kappa系数分别达到80%和82%,比相应的非超像元算法分别提高了6%和8%,在两个测试集上表现均优于长短时记忆网络、深度置信网络等对比算法.结论 本文提出的卷积神经网络变化检测方法可以充分学习切片的空间信息和其他有效特征,避免过拟合现象;多层尺度切片特征融合的方法优于单一切片尺度训练神经网络的方法;结合深度学习和超像元分割算法,检测单元实现了由切片到超像元的转变,能对同物异谱的区域做出有效判决,有利于提升变化检测精度.
推荐文章
采用独立阈值的遥感影像变化检测方法
变化检测
小比例变化量区域
像斑
样本选择
期望最大化算法
遥感影像变化检测方法研究
遥感影像
监督分类
非监督分类
变化检测
基于Xception模型的遥感影像场景变化检测
场景分类
变化检测
简单线性迭代聚类
迁移学习
Xception
基于遥感影像的变化检测技术
变化检测
图像配准
遥感影像
Harris算子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合深度学习和超像元的高分遥感影像变化检测
来源期刊 中国图象图形学报 学科 工学
关键词 高分辨率遥感影像 变化检测 深度学习 超像元 多切片尺度特征融合
年,卷(期) 2020,(6) 所属期刊栏目 遥感图像处理
研究方向 页码范围 1271-1282
页数 12页 分类号 TP751
字数 7471字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张兵 上海海洋大学信息学院 163 3918 35.0 58.0
7 高连如 中国科学院空天信息创新研究院数字地球重点实验室 20 187 7.0 13.0
8 陈正超 中国科学院空天信息创新研究院数字地球重点实验室 32 527 13.0 22.0
9 王艳恒 上海海洋大学信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (144)
共引文献  (88)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(8)
  • 参考文献(1)
  • 二级参考文献(7)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(12)
  • 参考文献(0)
  • 二级参考文献(12)
2014(15)
  • 参考文献(2)
  • 二级参考文献(13)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(24)
  • 参考文献(1)
  • 二级参考文献(23)
2017(15)
  • 参考文献(2)
  • 二级参考文献(13)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高分辨率遥感影像
变化检测
深度学习
超像元
多切片尺度特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导