基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高智能医疗护理水平,减少护理工作量,节约医院成本.提出一种基于卷积神经网络的病人体态行为特征提取算法,该算法采用双网络模型设计,包括病人检测网络模型和病人体态行为特征提取模型,应用该算法到病人体态行为检测系统中,从而实现对病人的识别监控,提高智能医疗护理水平.最后,通过开源框架平台,对病人行为检测系统进行测试,实验结果表明,测试数据集合越大,病人体态行为特征提取精度越高,对病人体态行为类别的平均识别率97.6%,从而验证了系统的有效性和正确性.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的智能医疗护理研究
来源期刊 中国数字医学 学科 医学
关键词 卷积神经网络 智能医疗护理 体态行为检测 特征提取
年,卷(期) 2020,(4) 所属期刊栏目 特别专题
研究方向 页码范围 5-7,25
页数 4页 分类号 R47|TP311
字数 2524字 语种 中文
DOI 10.3969/j.issn.1673-7571.2020.04.002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (85)
共引文献  (522)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(3)
  • 参考文献(0)
  • 二级参考文献(3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(11)
  • 参考文献(0)
  • 二级参考文献(11)
2016(14)
  • 参考文献(2)
  • 二级参考文献(12)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
智能医疗护理
体态行为检测
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国数字医学
月刊
1673-7571
11-5550/R
大16开
北京市朝阳区光华路甲8号和乔大厦A座528A室
80-133
2006
chi
出版文献量(篇)
6783
总下载数(次)
21
论文1v1指导