基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对脑电信号随机性强、动态变化迅速等特点,提出了一种简化深度学习模型研究癫痫脑电识别问题.提出的模型以一维卷积神经网络为基础,在结构方面简化了卷积层、池化层等以提高模型效率,在整体框架方面应用了Keras框架,在训练优化算法方面采用RMSProp算法作为模型优化算法,通过预定义的目标函数来进行损失估计,模型设计上加入了批标准化层和全局均值池化层.基于所提模型,从三个方面研究了癫痫脑电识别问题,即:利用经验模态分解,分别选取前三阶、前五阶、前七阶、前八阶的本征模态函数分量,在简化模型上进行对比分析;利用提出模型所具备的深度学习特点,直接识别原始脑电信号而无须特征提取环节;增加了三种不同方法分别提取7类特征,对相同的脑电数据进行对比分析.性能分析结果表明:对于五类不同的脑电信号,前三阶的本征模态函数分量的识别率达到92.1%,比其他几种处理方式识别率高;前八阶的本征模态分量识别率不及原始信号,表明人工数据处理时会给数据带来噪声;所提出的简化深度学习模型能高效处理癫痫脑电识别问题,具备较高效率和较好性能.
推荐文章
基于LSTM模型的单导联脑电癫痫发作预测
癫痫发作预测
单导联
小波能量
长短时程记忆网络
利用高频脑电的局灶性癫痫患者癫痫发作检测
癫痫发作
有向传递函数
信息流差异
γ波段
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向癫痫脑电的简化深度学习模型
来源期刊 国防科技大学学报 学科 工学
关键词 癫痫脑电 卷积神经网络 Keras框架 经验模态分解
年,卷(期) 2020,(6) 所属期刊栏目 信息与通信工程· 计算机科学与技术
研究方向 页码范围 106-111
页数 6页 分类号 TP391.4
字数 语种 中文
DOI 10.11887/j.cn.202006013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张锦 47 477 10.0 20.0
2 刘熔 1 0 0.0 0.0
3 田森 1 0 0.0 0.0
4 陈胜 2 5 1.0 2.0
5 魏建好 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (147)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
癫痫脑电
卷积神经网络
Keras框架
经验模态分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国防科技大学学报
双月刊
1001-2486
43-1067/T
大16开
湖南省长沙市开福区德雅路109号
42-98
1956
chi
出版文献量(篇)
3593
总下载数(次)
5
总被引数(次)
31889
论文1v1指导