基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了在脑电信号鲁棒特征学习中提取更多脑电抽象和深层特征,本文在卷积长短时记忆网络的基础上提出一种深度学习混合网络.采用快速傅里叶变换将多通道的脑电信号转换为一系列具有空域、时域、频域相关信息的频谱图;将改进的卷积神经网络和神经图灵机组合搭建完成深度学习混合模型卷积神经图灵机C-NTM;通过认知工作负载脑电的分类任务对改进的模型进行评估.实验结果表明:本文所提模型在相应的数据库上取得了94.5%的准确率,优于目前在脑电分类任务中效果最好的模型.该模型能够有效地学习不同受试者之间和同一受试者不同状态时的脑电特征,实现更好的脑电鲁棒特征学习.
推荐文章
促进深度学习的S PO C助学群组构建及策略研究
深度学习
SPOC
助学群组
助学策略
高阶思维
基于改进深度置信网络的故障诊断方法
故障诊断
深度置信网络
特征提取
自适应谐振
字典学习优化结合HMAX模型的鲁棒人脸识别
人脸识别
HMAX模型
鲁棒性
支持向量机(SVM)
字典学习优化
问题驱动促进深度学习
深度学习
问题驱动
数学学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进深度学习模型C-NTM的脑电鲁棒特征学习
来源期刊 哈尔滨工程大学学报 学科 工学
关键词 脑电信号 鲁棒特征 深度学习 卷积神经网络 神经图灵机 频谱图 卷积神经图灵机 认知负载
年,卷(期) 2019,(9) 所属期刊栏目
研究方向 页码范围 1642-1649
页数 8页 分类号 TP391
字数 6155字 语种 中文
DOI 10.11990/jheu.201808069
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毕晓君 中央民族大学信息工程学院 126 1188 17.0 27.0
5 乔伟征 哈尔滨工程大学信息与通信工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (36)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(2)
  • 参考文献(0)
  • 二级参考文献(2)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电信号
鲁棒特征
深度学习
卷积神经网络
神经图灵机
频谱图
卷积神经图灵机
认知负载
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨工程大学学报
月刊
1006-7043
23-1390/U
大16开
哈尔滨市南岗区南通大街145号1号楼
14-111
1980
chi
出版文献量(篇)
5623
总下载数(次)
16
总被引数(次)
45433
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导