基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对频分双工(Frequency Division Duplexing,FDD)大规模多入多出(Multiple-Input Multiple-Output,MIMO)系统中现有信道状态信息(Channel State Information,CSI)反馈方法复杂度高、反馈精度低的问题,本文提出一种基于深度学习的CSI压缩反馈方法.该方法首先采用卷积神经网络(Convolutional Neural Network,CNN)提取信道特征矢量,然后利用最大池化(Maxpooling)网络压缩CSI,最后考虑到大规模MIMO信道存在空间相关性的特点,分别对单用户和多用户场景使用双向长短期记忆(Bidirectional Long Short-Term Memory,Bi-LSTM)网络和双向卷积长短期记忆(Bidirectional Convolutional Long Short-Term Memory,Bi-ConvLSTM)网络对CSI进行重构.本文利用大规模MIMO信道数据对所提的深度学习网络进行离线训练,该网络学习到的信道信息能充分表征信道的状态.仿真结果表明,与已有的典型CSI反馈方法相比,本文所提方法反馈精度更高,运行时间更短,系统性能提升明显.
推荐文章
基于深度学习的大规模MIMO信道状态信息反馈
大规模MIMO
深度学习
CSI反馈
一种基于Kaczmarz算法的大规模MIMO信号检测方法
Kaczmarz
大规模MIMO
信号检测
低复杂度
3D MIMO系统中一种有限反馈开销降低方法
三维多输入多输出
有限反馈
信道预测
二维分簇
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于深度学习的FDD大规模MIMO系统CSI反馈方法
来源期刊 电子学报 学科 工学
关键词 频分双工 大规模多入多出 信道状态信息 深度学习 压缩反馈 空间相关性
年,卷(期) 2020,(6) 所属期刊栏目 学术论文
研究方向 页码范围 1182-1189
页数 8页 分类号 TN911.72
字数 6537字 语种 中文
DOI 10.3969/j.issn.0372-2112.2020.06.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 廖勇 重庆大学通信与测控中心 170 2920 28.0 50.0
2 姚海梅 重庆大学通信与测控中心 8 11 2.0 3.0
3 花远肖 重庆大学通信与测控中心 6 9 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (18)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
频分双工
大规模多入多出
信道状态信息
深度学习
压缩反馈
空间相关性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
重庆市自然科学基金
英文译名:
官方网址:http://law.ddvip.com/law/2006-09/11584979384040.html
项目类型:重点项目
学科类型:
论文1v1指导