作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着数字化学习资源规模急剧扩张,"知识过载"和"学习迷航"等问题限制了在线学习资源推荐的性能,学习者从海量的学习资源中选择合适资源的难度随之增大.针对传统推荐算法中存在的数据稀疏和学习资源个性化推荐精度不高等问题,提出了基于行为分析的学习资源个性化推荐算法.首先,构建学习者-学习资源评分矩阵;其次,挖掘学习者行为数据并将行为数据格式化融入到协同过滤个性化推荐过程;最后,计算学习者相似度并为待推荐学习者生成学习资源推荐列表.为验证模型的有效性,以"Live Course在线课程平台"数据为样本构建实验数据集,通过对比实验表明,该方法具有更高的推荐精度,能够更加精确和全面定位学习者的真实需求,实现学习资源个性化推荐.
推荐文章
在线学习资源个性化推荐服务模型的构建
在线学习资源
个性化推荐
协同过滤
数据挖掘技术
云计算环境下的学习资源个性化推荐技术研究
个性化推荐
协同过滤
学习资源推荐
用户影响关系
教育推荐
基于行为序列分析的学习资源推荐算法研究
网络学习行为
行为序列相似度
学习者相似度
协同过滤
学习风格
基于主题聚类的 Web资源个性化推荐研究
语义网
主题
隐式跟踪
个性化推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于行为分析的学习资源个性化推荐
来源期刊 计算机技术与发展 学科 工学
关键词 行为分析 学习资源 个性化推荐 协同过滤 推荐精度
年,卷(期) 2020,(7) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 34-37,41
页数 5页 分类号 TP301|G434
字数 4433字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.07.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 聂黎生 江苏师范大学计算机科学与技术学院 12 17 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (112)
共引文献  (36)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(13)
  • 参考文献(2)
  • 二级参考文献(11)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(15)
  • 参考文献(2)
  • 二级参考文献(13)
2017(15)
  • 参考文献(3)
  • 二级参考文献(12)
2018(15)
  • 参考文献(4)
  • 二级参考文献(11)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行为分析
学习资源
个性化推荐
协同过滤
推荐精度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导