作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Web日志作为服务器的记录文件,记录了网站最重要的信息,随着大数据时代数据量的骤然增加,提出一种应对大数据量的数据挖掘算法,更有效地分析日志文件迫在眉睫.用户聚类是在对日志文件进行数据预处理的基础上,建立用户会话序列矩阵,进而对其进行聚类分析,论文针对K-Means算法在选取初始中心点上存在的问题,以及在构建用户会话矩阵后存在的孤立点的问题,提出了一种密度参数和KCR算法的优化算法—ICKM算法,该算法利用密度参数最大的对象作为第一中心点,随后从数据集中将此对象删除,利用KCR算法寻找下一个中心点,算法借助MapReduce计算框架,提高大数据环境下的数据处理速度,通过实验表明,ICKM算法在寻找初始中心点以及用户聚类上具有较高的准确度,在处理大数据量的数据集时,有较好的的运算速度.
推荐文章
个性化服务中的并行K-Means聚类算法
个性化服务
并行
聚类算法
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
基于变异的k-means聚类算法
聚类
mk-means算法
变异
基于深度信念网络的K-means聚类算法研究
K-means算法
深度信念网络
受限玻尔兹曼机
高维数据
聚类分析
FCM算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-Means算法的Web日志用户聚类研究
来源期刊 计算机与数字工程 学科 工学
关键词 用户聚类 K-Means算法 KCR算法 MapReduce
年,卷(期) 2020,(3) 所属期刊栏目 信息处理与网络安全
研究方向 页码范围 643-647
页数 5页 分类号 TP391.1
字数 4227字 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.03.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陆南 江苏科技大学电子信息学院 20 155 7.0 12.0
2 陈洲 江苏科技大学电子信息学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (312)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(7)
  • 参考文献(3)
  • 二级参考文献(4)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(11)
  • 参考文献(2)
  • 二级参考文献(9)
2016(11)
  • 参考文献(2)
  • 二级参考文献(9)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
用户聚类
K-Means算法
KCR算法
MapReduce
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导