基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在光伏光热系统中,光伏板的发电效率与PV/T组件温度密切相关.实时、精确地预测PV/T组件温度,对优化控制决策、提高光伏板发电效率具有重要意义.文章利用支持向量回归(SVR)算法建立PV/T组件温度预测模型.为了提高该模型预测结果的精确度,采用网格搜索与交叉验证相结合的方法对SVR核函数参数g和惩罚因子c进行寻优;然后,结合实验平台的测量数据,划分训练集和预测集,并对原始数据进行归一化处理;最后,文章将基于SVR算法温度预测模型的预测结果与BP神经网络的预测结果进行对比.分析结果表明:基于SVR算法温度预测模型的预测值与实测值基本一致,该模型的预测精度和泛化性能均优于BP神经网络的预测结果.
推荐文章
基于支持向量回归的设备故障趋势预测
支持向量回归
BP神经网络
灰色模型
灰色-AR模型
故障趋势预测
基于粒子群算法优化支持向量回归的水质预测模型
水质监测
支持向量回归机
非线性惯性权重
粒子群优化算法
组合模型
Boosting集成支持向量回归机的滑坡位移预测
支持向量机
Boosting集成
Bagging
滑坡位移
预测
基于小波支持向量回归的电力系统负荷预测
电力负荷
小波支持向量回归
短期预测
混沌动力系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量回归的PV/T组件温度实时预测
来源期刊 可再生能源 学科 工学
关键词 PV/T 温度预测 归一化 支持向量回归 网格搜索 交叉验证
年,卷(期) 2020,(8) 所属期刊栏目
研究方向 页码范围 1040-1046
页数 7页 分类号 TK519|TM914.4|TP301.6
字数 6005字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (77)
共引文献  (179)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(13)
  • 参考文献(2)
  • 二级参考文献(11)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(9)
  • 参考文献(3)
  • 二级参考文献(6)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PV/T
温度预测
归一化
支持向量回归
网格搜索
交叉验证
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
可再生能源
月刊
1671-5292
21-1469/TK
大16开
辽宁省营口市西市区银泉街65号
8-61
1983
chi
出版文献量(篇)
4935
总下载数(次)
14
总被引数(次)
41118
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导