基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像识别是实现火灾预警的重要手段之一.针对传统方法存在的检测精度低、难以识别小目标等问题,提出了一种基于混合卷积神经网络(CNN)的火灾识别方法.为了丰富模型提取的特征信息,充分利用不同尺度下的特征,文中提出的混合网络结构(HybridNet)包含两路特征提取器.首先,通过其中一路特征提取器提取图像中的深层语义信息,另一路特征提取器提取图像的浅层上下文信息,通过池化操作使两路特征提取器提取的特征图大小得以匹配.为了进一步实现特征之间的融合,提高模型的小目标识别性能,通过自编码器对特征进行降维处理,剔除冗余信息保留关键特征,实现多尺度特征的融合.最后,融合特征经过分类器得到分类结果.实验结果表明,提出的混合CNN优于现有的识别方法,在FireDetectData和Mivia数据集上分别取得了96.82%和97.96%的准确率.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于混合卷积神经网络的火灾识别研究
来源期刊 计算机技术与发展 学科 工学
关键词 机器视觉 火灾识别 混合网络 特征提取网络 特征融合
年,卷(期) 2020,(7) 所属期刊栏目 安全与防范
研究方向 页码范围 81-86
页数 6页 分类号 TP391.4
字数 4494字 语种 中文
DOI 10.3969/j.issn.1673-629X.2020.07.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姜明 杭州电子科技大学计算机学院 44 555 11.0 22.0
2 熊卫华 浙江理工大学机械与自动控制学院 17 18 2.0 3.0
3 任嘉锋 浙江理工大学机械与自动控制学院 3 0 0.0 0.0
4 吴之昊 浙江理工大学机械与自动控制学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (77)
共引文献  (214)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(17)
  • 参考文献(2)
  • 二级参考文献(15)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
火灾识别
混合网络
特征提取网络
特征融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导