基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 基于超声图像的乳腺病灶分割是实现乳腺癌计算机辅助诊断和定量分析的基本预处理步骤.由于乳腺超声图像病灶边缘通常较为模糊,而且缺乏大量已标注的分割图像,增加了基于深度学习的乳腺超声图像分割难度.本文提出一种混合监督双通道反馈U-Net(hybrid supervised dual-channel feedback U-Net,HSDF-U-Net)算法,提升乳腺超声图像分割的准确性.方法 HSDF-U-Net通过融合自监督学习和有监督分割实现混合监督学习,并且进一步通过设计双通道反馈U-Net网络提升图像分割准确性.为了改善标记数据有限的问题,首先在自监督学习框架基础上结合标注分割图像中的标签信息,设计一种边缘恢复的辅助任务,以实现对病灶边缘表征能力更强的预训练模型,然后迁移至下游图像分割任务.为了提升模型在辅助边缘恢复任务和下游分割任务的表现,将循环机制引入经典的U-Net网络,通过将反馈的输出结果重新送入另一个通道,构成双通道编码器,然后解码输出更精确的分割结果.结果 在两个公开的乳腺超声图像分割数据集上评估HSDF-U-Net算法性能.HSDF-U-Net对Dataset B数据集中的图像进行分割获得敏感度为0.848 0、Dice为0.826 1、平均对称表面距离为5.81的结果,在Dataset BUSI(breast ultrasound images)数据集上获得敏感度为0.803 9、Dice为0.803 1、平均对称表面距离为6.44的结果.与多种典型的U-Net分割算法相比,上述结果均有提升.结论 本文所提HSDF-U-Net算法提升了乳腺超声图像中的病灶分割的精度,具备潜在的应用价值.
推荐文章
多尺度监督U-Net甲状腺结节超声图像分割
图像分割
深度学习
注意力机制
神经网络
U 型网络
基于U-Net卷积神经网络的轮毂缺陷分割
轮毂缺陷分割
自动分割
深度学习
神经网络
基于改进的U-Net眼底视网膜血管分割
U型网络
视网膜
血管分割
形态学滤波
基于Group-Depth U-Net的电子显微图像中神经元结构分割
深层卷积神经网络
分组卷积网络
神经元结构分割
电子显微成像
Group-DepthU-Net
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向乳腺超声图像分割的混合监督双通道反馈U-Net
来源期刊 中国图象图形学报 学科 工学
关键词 乳腺超声图像分割 深度学习 自监督学习 混合监督学习 双通道反馈U-Net
年,卷(期) 2020,(10) 所属期刊栏目 超声图像
研究方向 页码范围 2206-2217
页数 12页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 施俊 36 309 8.0 17.0
2 贡荣麟 1 0 0.0 0.0
3 王骏 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (82)
共引文献  (3)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(13)
  • 参考文献(4)
  • 二级参考文献(9)
2018(7)
  • 参考文献(2)
  • 二级参考文献(5)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
乳腺超声图像分割
深度学习
自监督学习
混合监督学习
双通道反馈U-Net
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导