钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机应用研究期刊
\
基于K-means和naive Bayes的数据库用户行为异常检测研究
基于K-means和naive Bayes的数据库用户行为异常检测研究
作者:
何发镁
冯安然
杨杰
王旭仁
马慧珍
原文服务方:
计算机应用研究
数据库
用户行为
异常检测
K-means聚类
naiveBayes分类算法
摘要:
针对数据库用户行为异常导致数据库泄露问题,提出了一种基于K-means和naive Bayes算法的数据库用户异常检测方法.首先,利用数据库历史审计日志中用户的查询语句与查询结果,采用K-means聚类方法得到用户的分组;然后,使用naive Bayes分类算法构造用户异常检测模型.与单独使用naive Bayes分类法构造的模型相比,在数据预处理时其精简了用户行为轮廓的表示方法,降低了计算冗余,减少了81%的训练时间;利用K-means聚类方法得到用户组别,使检测的精确率提高了7.06%,F1值提高了3.33%.实验证明,所提方法大幅降低了训练时间,取得了良好的检测效果.
下载原文
收藏
引用
分享
推荐文章
改进k-means算法的网络数据库入侵检测
网络数据库
入侵检测
改进算法
基于K-means算法的校园网用户行为聚类分析
K-means
聚类分析
用户行为
基于K-means算法的Android权限检测机制研究
Android权限
静态分析
敏感值
K-means算法
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
内容分析
文献信息
版权信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于K-means和naive Bayes的数据库用户行为异常检测研究
来源期刊
计算机应用研究
学科
关键词
数据库
用户行为
异常检测
K-means聚类
naiveBayes分类算法
年,卷(期)
2020,(4)
所属期刊栏目
信息安全技术
研究方向
页码范围
1128-1131
页数
4页
分类号
TP393.08
字数
语种
中文
DOI
10.19734/j.issn.1001-3695.2018.09.0755
五维指标
传播情况
被引次数趋势
(/次)
(/年)
版权信息
全文
全文.pdf
引文网络
引文网络
二级参考文献
(22)
共引文献
(13)
参考文献
(11)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
2008(4)
参考文献(1)
二级参考文献(3)
2010(2)
参考文献(1)
二级参考文献(1)
2011(2)
参考文献(0)
二级参考文献(2)
2012(1)
参考文献(0)
二级参考文献(1)
2013(6)
参考文献(2)
二级参考文献(4)
2014(7)
参考文献(0)
二级参考文献(7)
2015(4)
参考文献(2)
二级参考文献(2)
2016(6)
参考文献(4)
二级参考文献(2)
2018(1)
参考文献(1)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
数据库
用户行为
异常检测
K-means聚类
naiveBayes分类算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
主办单位:
四川省计算机研究院
出版周期:
月刊
ISSN:
1001-3695
CN:
51-1196/TP
开本:
大16开
出版地:
邮发代号:
创刊时间:
1984-01-01
语种:
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
期刊文献
相关文献
1.
改进k-means算法的网络数据库入侵检测
2.
基于K-means算法的校园网用户行为聚类分析
3.
基于K-means算法的Android权限检测机制研究
4.
基于Spark的并行K-means算法研究
5.
一种K-MEANS算法在网络异常检测中的应用
6.
面向大数据的K-means算法综述
7.
基于划分的数据挖掘K-means聚类算法分析
8.
k-means算法的研究与改进
9.
基于孤立点自适应的K-means算法
10.
基于数据抽样的自动k-means聚类算法
11.
一种基于k-means聚类的航运信息孤立点分析算法
12.
基于MapReduce框架下K-means的改进算法
13.
基于变异的k-means聚类算法
14.
改进的k-means算法在入侵检测中的应用
15.
基于KD-树和K-means动态聚类方法研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机应用研究2000
计算机应用研究2001
计算机应用研究2002
计算机应用研究2003
计算机应用研究2004
计算机应用研究2005
计算机应用研究2006
计算机应用研究2007
计算机应用研究2008
计算机应用研究2009
计算机应用研究2010
计算机应用研究2011
计算机应用研究2012
计算机应用研究2013
计算机应用研究2014
计算机应用研究2015
计算机应用研究2016
计算机应用研究2017
计算机应用研究2018
计算机应用研究2019
计算机应用研究2020
计算机应用研究2022
计算机应用研究2020年第2期
计算机应用研究2020年第6期
计算机应用研究2020年第5期
计算机应用研究2020年第3期
计算机应用研究2020年第4期
计算机应用研究2020年第1期
计算机应用研究2020年第7期
计算机应用研究2020年第8期
计算机应用研究2020年第9期
计算机应用研究2020年第11期
计算机应用研究2020年第10期
计算机应用研究2020年第12期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号