基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来基于深度学习的图像修复方法相比于传统方法,表现出明显优势,前者能更好的生成视觉上合理的图像结构和纹理.但现有的标准卷积神经网络方法,通常会造成颜色差异过大和图像纹理缺失与失真的问题.本文提出了一种新型图像修复深度网络模型,该模型由两个相互独立的生成对抗式网络模块组成.其中,图像修复网络模块旨在解决图像缺失区域的修复问题,其生成器基于部分卷积网络;图像优化网络模块旨在解决修复后图像存在局部色差的问题,其生成器基于深度残差网络.通过两个网络模块的协同作用,图像的视觉效果与图像质量得到提高.与其他先进方法进行定性和定量比较的实验结果表明,本文提出的方法在图像修复质量上表现更好.
推荐文章
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于生成对抗文本的人脸图像翻译
人脸图像翻译
生成对抗文本
深度对称结构联合编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种生成对抗网络用于图像修复的方法
来源期刊 电子学报 学科 工学
关键词 部分卷积 生成对抗神经网络 残差网络 图像修复
年,卷(期) 2020,(10) 所属期刊栏目 学术论文
研究方向 页码范围 1891-1898
页数 8页 分类号 TP391.9
字数 语种 中文
DOI 10.3969/j.issn.0372-2112.2020.10.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗会兰 51 445 13.0 18.0
2 敖阳 1 0 0.0 0.0
3 袁璞 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
部分卷积
生成对抗神经网络
残差网络
图像修复
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
论文1v1指导