原文服务方: 西北林学院学报       
摘要:
比较分析BP神经网络与SVM模型在径流预测应用中的性能特征.以降雨量为预报因子,采用BP人工神经网络模型和SVM模型对大别山黄尾河流域40 a时长的同期径流过程进行数值模拟,并对二者的预测性能进行比较与评价.结果 表明,黄尾河流域BP模型模拟的总体相对误差为14.43%,合格率为77.5%,确定性系数为0.76,预报精度等级为乙级;SVM模拟的总体相对误差为12.41%,合格率、确定性系数及预报精度等级与BP模型相同.SVM模型模拟结果较BP模型而言更集中于较小的误差范围内.BP模型的累积误差>SVM模型,并且随着误差自由度的增大,这种差距有扩大的趋势,表明SVM模型的误差范围较小,误差间隔小于BP模型,模拟性能较BP模型更稳定.
推荐文章
基于BP神经网络的河川年径流量预测
人工神经网络
BP神经网络
L-M算法
年径流量预测
优化BP神经网络的位移预测模型
改进粒子群算法
BP神经网络
混凝土重力坝
位移
预测
仿真分析
基于 BP神经网络与SVM的快速路行程时间组合预测研究
快速路行程时间
车牌识别数据
BP神经网络
支持向量机
组合预测
基于BP神经网络的表面硬度预测模型
BP神经网络
激光相变硬化
扫描参数
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络与SVM模型的黄尾河径流预测比较分析
来源期刊 西北林学院学报 学科
关键词 黄尾河 径流预测 神经网络模型(BP) 支持向量机模型(SVM)
年,卷(期) 2020,(5) 所属期刊栏目 森林经理学
研究方向 页码范围 201-206
页数 6页 分类号 S715.3
字数 语种 中文
DOI 10.3969/j.issn.1001-7461.2020.05.31
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (123)
共引文献  (20)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(7)
  • 参考文献(2)
  • 二级参考文献(5)
2009(9)
  • 参考文献(2)
  • 二级参考文献(7)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(10)
  • 参考文献(1)
  • 二级参考文献(9)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(11)
  • 参考文献(0)
  • 二级参考文献(11)
2016(16)
  • 参考文献(0)
  • 二级参考文献(16)
2017(17)
  • 参考文献(0)
  • 二级参考文献(17)
2018(7)
  • 参考文献(1)
  • 二级参考文献(6)
2019(6)
  • 参考文献(5)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
黄尾河
径流预测
神经网络模型(BP)
支持向量机模型(SVM)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西北林学院学报
双月刊
1001-7461
61-1202/S
大16开
1984-01-01
chi
出版文献量(篇)
5683
总下载数(次)
0
总被引数(次)
73559
论文1v1指导