基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统目标检测方法不能兼顾目标识别精度和检测实时性,且在实际生产复杂工况下识别效果不佳的问题,提出一种基于Inception-SSD框架的零件深度学习识别方法.首先,提出了融合Inception预测结构的SSD优化框架Inception-SSD,将Inception网络结构引入到SSD网络额外层中,并使用批量标准化模块(BN)和残差结构连接,从而捕获更多目标信息而又不会增加网络复杂性,以提高检测准确率而又不影响其检测速度,并增加算法鲁棒性;然后提出在原损失函数基础上增加排斥损失项以改进损失函数,同时采用一种基于加权算法的非极大值抑制方法,克服模型表达能力不足的缺点.最后,将改进前后SSD算法在自制零件数据集上进行训练和测试,实验结果表明:本文方法在实际生产过程复杂情况下检测准确率达到97.8%,相比原SSD算法提升11.7%,检测速率41 frame/s.在提高检测精度同时还保证了实时性,能够满足实际生产环境零件检测需求.
推荐文章
基于图像处理与卷积神经网络的零件识别
零件识别
图像饱和度
种子填充法
尺度不变特征转换
卷积神经网络
基于Harris角点检测的零件形状识别
Harris角点检测
滤波
形状匹配
基于机器视觉的零件颜色识别系统
机器视觉
颜色识别
阈值
二值化
机械零件识别系统的研究
神经网络
边界矩
机械零件
模式识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Inception-SSD算法的零件识别
来源期刊 光学精密工程 学科 工学
关键词 深度学习 目标检测 零件识别 Inception结构 残差结构
年,卷(期) 2020,(8) 所属期刊栏目 信息科学
研究方向 页码范围 1799-1809
页数 11页 分类号 TP273.5
字数 语种 中文
DOI 10.3788/OPE.20202808.1799
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杜柳青 44 255 8.0 15.0
2 余永维 34 283 8.0 16.0
3 韩鑫 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (89)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
目标检测
零件识别
Inception结构
残差结构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学精密工程
月刊
1004-924X
22-1198/TH
大16开
长春市东南湖大路3888号
12-166
1959
chi
出版文献量(篇)
6867
总下载数(次)
10
总被引数(次)
98767
论文1v1指导