基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
风力发电机组滚动轴承工况往往比较恶劣,其故障振动加速度信号具有非平稳、非线性的特性,而传统的时频域方法提取故障特征时存在不准确、适应性差等问题,针对此提出一种基于局部均值分解(LMD)和形态学分形维数的特征提取算法,并结合极限学习机(ELM)完成风电机组轴承故障诊断.该方法同时考虑滚动轴承在不同损伤程度以及不同故障类型下的情况,首先将原始振动信号进行LMD自适应分解为一系列不同频率的乘积分量(PF);接着计算所有分量与原信号的相关性系数,选择相关系数值最大的前3个PF分量作为敏感变量;并利用形态学覆盖估计所选PF分量的分形维数,构建故障特征向量组;之后将其作为ELM的输入,将轴承状态作为输出,建立ELM轴承状态识别模型.最后使用西储大学平台轴承数据和实际风场采集故障数据对算法进行验证,结果表明,该方法能够有效识别轴承不同损伤程度以及不同故障,整体识别率达到99%以上.
推荐文章
基于小波包变换和极限学习机的滚动轴承故障诊断
轴承
故障诊断
小波包变换
极限学习机
基于极限学习机的机械设备故障诊断研究
极限学习机
过采样
隐层节点
故障诊断
神经网络
反向传播
基于极限学习机的风电机组主轴承故障诊断方法
风电机组
主轴承
故障诊断
极限学习机
改进粒子群优化算法
基于不平衡学习的集成极限学习机污水处理故障诊断
加权极限学习机
AdaBoost集成算法
不平衡学习
污水处理
故障诊断
模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于形态学分形和极限学习机的风电机组轴承故障诊断
来源期刊 太阳能学报 学科 工学
关键词 故障诊断 信号处理 特征提取 数学形态学 分形维数 风电机组 轴承故障
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 102-112
页数 11页 分类号 TH17
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘利强 27 50 4.0 6.0
2 齐咏生 49 363 11.0 17.0
3 李永亭 18 59 4.0 7.0
4 樊佶 2 0 0.0 0.0
5 高学金 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (71)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(14)
  • 参考文献(2)
  • 二级参考文献(12)
2016(9)
  • 参考文献(1)
  • 二级参考文献(8)
2017(12)
  • 参考文献(7)
  • 二级参考文献(5)
2018(6)
  • 参考文献(4)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
信号处理
特征提取
数学形态学
分形维数
风电机组
轴承故障
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
论文1v1指导