基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的:建立基于卷积神经网络的人工智能烧伤深度识别模型并测试其效果。方法:在本诊断试验评价研究中,收集中南大学湘雅医院(下称笔者单位)2010年1月—2019年12月收治的符合入选标准的221例烧伤患者伤后48 h内创面照片484张,采用随机数字编号。采用图像查看软件圈出目标创面,由笔者单位烧伤整形科3名具有5年以上专科工作经验的主治医师判断烧伤深度,用不同颜色标记浅Ⅱ度、深Ⅱ度或Ⅲ度烧伤后,按224×224像素的尺寸切割得到完整大小的图像块5 637张。采用图片生成器将3种深度烧伤图像块均扩充至10 000张后,将每种烧伤深度图像块按7.0∶1.5∶1.5比例分为训练集、验证集和测试集。在Keras 2.2.4 Python 2.8.0版本下,采用卷积神经网络中的残差网络ResNet-50构建人工智能烧伤深度识别模型,输入训练集进行训练,利用验证集对模型进行调整、优化。利用测试集测试构建的模型识别各类烧伤深度的准确率,计算精确率、召回率及F1指数;通过降维工具tSNE将测试结果降维可视化生成二维tSNE云图,观察各类烧伤深度分布情况;根据模型对3种烧伤深度识别的敏感度及特异度,绘制出相应受试者工作特征(ROC)曲线,计算ROC曲线下面积。结果:(1)经测试集测试,人工智能烧伤深度识别模型识别浅Ⅱ度、深Ⅱ度、Ⅲ度烧伤的精确率分别为84%(1 095/1 301)、81%(1 215/1 499)、82%(1 395/1 700),召回率分别为73%(1 095/1 500)、81%(1 215/1 500)、93%(1 395/1 500),F1指数分别为0.78、0.81、0.87。(2)tSNE云图显示,人工智能烧伤深度识别模型测试集测试结果中不同烧伤深度之间总体重叠较少,其中浅Ⅱ度与深Ⅱ度、深Ⅱ度与Ⅲ度烧伤之间重叠相对较多,而浅Ⅱ度与Ⅲ度烧伤之间重叠相对较少。(3)人工智能烧伤深度识别模型识别3种烧伤深度的ROC曲线下面积均≥0.94。结论:采用ResNet-50网络建立的人工智能烧伤深度识别模型可较准确地识别烧伤患者早期创面照片中烧伤深度,特别是浅Ⅱ度与Ⅲ度烧伤,有望用于临床烧伤深度辅助诊断,提高诊断准确率。
推荐文章
基于深度卷积自编码神经网络的手写数字识别研究
卷积自编码神经网络
双线性插值
手写数字识别
深度学习
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于深度卷积神经网络的数字调制方式识别
调制方式识别
深度学习
卷积神经网络
星座图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的人工智能烧伤深度识别模型的建立及测试效果
来源期刊 中华烧伤杂志 学科
关键词 烧伤 早期诊断 人工智能 卷积神经网络 残差网络 烧伤深度识别
年,卷(期) 2020,(11) 所属期刊栏目 技术与方法·新技术与新理念
研究方向 页码范围 1070-1074
页数 5页 分类号
字数 语种 中文
DOI 10.3760/cma.j.cn501120-20190926-00385
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (152)
共引文献  (72)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1955(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(3)
  • 参考文献(0)
  • 二级参考文献(3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(9)
  • 参考文献(1)
  • 二级参考文献(8)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(12)
  • 参考文献(0)
  • 二级参考文献(12)
2013(16)
  • 参考文献(0)
  • 二级参考文献(16)
2014(18)
  • 参考文献(3)
  • 二级参考文献(15)
2015(17)
  • 参考文献(1)
  • 二级参考文献(16)
2016(16)
  • 参考文献(2)
  • 二级参考文献(14)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(7)
  • 参考文献(4)
  • 二级参考文献(3)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
烧伤
早期诊断
人工智能
卷积神经网络
残差网络
烧伤深度识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中华烧伤杂志
月刊
1009-2587
50-1120/R
大16开
重庆市沙坪坝区高滩岩正街
78-131
1985
chi
出版文献量(篇)
4698
总下载数(次)
6
论文1v1指导