基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于运维数据针对光伏(PV)电站逆变器的故障诊断进行研究,提出一种基于稀疏贝叶斯极限学习机(SBELM)的精准的光伏逆变器故障诊断方法.首先分析逆变器故障数据特征,将该问题转化为一个多分类问题;然后,采用合成少数类过采样技术(SMOTE)方法人工生成数据,解决数据不均衡问题,根据环境和逆变器实时监控据提取特征向量,并通过SBELM训练模型,可给出输出的概率分布,自动修剪冗余的隐藏节点,在不影响性能的前提下实现用部分节点进行多故障分类.通过实验分析,相比于其他故障诊断方法,SBELM诊断速度快且精度高,更适用于诊断光伏逆变器的故障.
推荐文章
基于极限学习机的机械设备故障诊断研究
极限学习机
过采样
隐层节点
故障诊断
神经网络
反向传播
基于不平衡学习的集成极限学习机污水处理故障诊断
加权极限学习机
AdaBoost集成算法
不平衡学习
污水处理
故障诊断
模型
基于动态贝叶斯网络的机载电子设备故障诊断
故障诊断
机载电子设备
动态贝叶斯网络
动态故障树
光电雷达
基于贝叶斯网络模型的电子装备故障诊断研究
电子装备
故障诊断
贝叶斯网络
不确定性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏贝叶斯极限学习机的光伏电站设备故障诊断研究
来源期刊 太阳能学报 学科 工学
关键词 光伏电站设备 故障诊断 逆变器 稀疏贝叶斯极限学习机 SMOTE 机器学习
年,卷(期) 2020,(8) 所属期刊栏目
研究方向 页码范围 221-226
页数 6页 分类号 TK513.5
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李静 26 128 6.0 10.0
2 李继云 38 225 9.0 12.0
3 孙莉 56 452 12.0 17.0
4 王磊 23 170 6.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (54)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光伏电站设备
故障诊断
逆变器
稀疏贝叶斯极限学习机
SMOTE
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
论文1v1指导