基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,生成对抗网络在约束图像生成方面表现出了较好的潜力,使其适用于图像超分辨率重建.针对基于卷积神经网络的图像超分辨率重建算法存在的特征信息利用率低的问题,基于生成对抗网络框架,提出了残差密集生成对抗网络的超分辨率重建算法.该算法定义生成器网络、判别器网络,通过构建残差密集网络作为生成器网络及PatchGAN作为判别器网络,以解决基于卷积神经网络的超分辨率算法中特征信息利用率低以及生成对抗网络收敛慢的问题.该重建算法在Set5等标准数据集上与主流的超分辨率重建算法进行对比,实验表明,该算法能够有效地提高特征信息利用率,较好地恢复低分辨率图像的细节信息,提高图像重建的质量.
推荐文章
基于ResNeXt和WGAN网络的单图像超分辨率重建
单图像超分辨率重建
ResNeXt
WGAN
深度学习
生成对抗网络的血管内超声图像超分辨率重建
血管内超声
超分辨率重建
生成对抗网络
亚像素卷积层
改进的单幅图像自学习超分辨率重建方法
单幅图像超分辨率
L2范数
协作表示
支持向量回归
基于生成对抗网络的机载遥感图像超分辨率重建
机载遥感
超分辨率重建
深度学习
密集剩余残差块
特征提取
跳跃链接
沃瑟斯坦
生成对抗网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的生成对抗网络图像超分辨率重建
来源期刊 计算机工程与应用 学科 工学
关键词 超分辨率重建 生成对抗网络 残差密集网络 PatchGAN
年,卷(期) 2020,(4) 所属期刊栏目 图形图像处理
研究方向 页码范围 191-196
页数 6页 分类号 TP391.41
字数 5390字 语种 中文
DOI 10.3778/j.issn.1002-8331.1907-0055
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄初华 贵州大学计算机科学与技术学院 9 24 3.0 4.0
2 李诚 贵州大学计算机科学与技术学院 9 37 4.0 5.0
3 张羽 贵州大学计算机科学与技术学院 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (137)
共引文献  (230)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (4)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(11)
  • 参考文献(1)
  • 二级参考文献(10)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(12)
  • 参考文献(0)
  • 二级参考文献(12)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(10)
  • 参考文献(3)
  • 二级参考文献(7)
2016(13)
  • 参考文献(0)
  • 二级参考文献(13)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率重建
生成对抗网络
残差密集网络
PatchGAN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导