基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对光伏发电神经网络预测模型输入变量较多,造成网络预测的稳定度与精确度不高的问题,提出一种基于改进MIV(mean impact value)算法的GA-BP神经网络光伏短期发电预测的方法.此方法结合Spearman相关系数显著性检验与利用欧式距离计算变化因子α改进的MIV分析,得到输入变量(气象因素)与输出变量(光伏发电量)的外部相关程度与内部相关程度,筛选出对输出变量相关程度最大的输入变量,利用优化的神经网络对光伏发电进行短期预测.实验结果表明,该方法的均方误差由BP、GA-BP预测网络的3.7034、1.8552减小到0.6450,提高了预测网络的稳定度与精准度.
推荐文章
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于 BP 神经网络的光伏出力预测
BP神经网络
光伏发电
相关性分析
对比寻优
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MIV分析的GA-BP神经网络光伏短期发电预测
来源期刊 太阳能学报 学科 工学
关键词 光伏发电预测 遗传算法 BP神经网络 改进的MIV算法
年,卷(期) 2020,(8) 所属期刊栏目
研究方向 页码范围 236-242
页数 7页 分类号 TK513.5
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (125)
共引文献  (86)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(20)
  • 参考文献(0)
  • 二级参考文献(20)
2012(19)
  • 参考文献(0)
  • 二级参考文献(19)
2013(14)
  • 参考文献(2)
  • 二级参考文献(12)
2014(13)
  • 参考文献(0)
  • 二级参考文献(13)
2015(10)
  • 参考文献(2)
  • 二级参考文献(8)
2016(8)
  • 参考文献(2)
  • 二级参考文献(6)
2017(7)
  • 参考文献(5)
  • 二级参考文献(2)
2018(10)
  • 参考文献(4)
  • 二级参考文献(6)
2019(2)
  • 参考文献(0)
  • 二级参考文献(2)
2020(2)
  • 参考文献(0)
  • 二级参考文献(2)
2020(2)
  • 参考文献(0)
  • 二级参考文献(2)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
光伏发电预测
遗传算法
BP神经网络
改进的MIV算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
论文1v1指导