基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在语音情感分类算法中,目前大多数基于深度学习的方法存在没有考虑时域和频域的特征进行建模,且网络训练时间长、识别率不高的问题,提出了一种基于神经网络的语谱图情感分类算法.首先选取语谱图作为模型的输入,且为了减少语音情感特征提取过程中浅层特征和训练时上下文细节特征的损失,神经网络模型采用带有残差块的ResNet18网络和嵌入注意力机制的双向长短时记忆(BLSTM)网络的融合模型作为改进,利用ResNet18提取语谱图特征,然后使用注意力机制对其进行特征加权,在BLSTM网络中对加权后的特征进行训练和分类,最终该模型在CASIA数据集上的识别率分别为88.2%,与其他方法相比,所提算法有更好的语音情感分类效果,并且大幅度缩短了整体训练时间.
推荐文章
基于神经网络的图像分类算法
分类算法
神经网络
图像处理
图像分类
多尺度卷积循环神经网络的情感分类技术
文本情感分类
卷积神经网络
循环神经网络
长短时记忆
多尺度
基于BP神经网络的Web页面分类算法
分类技术
信息检索
Web页面
基于BiGRU-attention神经网络的文本情感分类模型
文本情感分类
注意力机制
双向门控循环神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的语谱图情感分类算法
来源期刊 电子测量技术 学科
关键词 图像处理 残差网络 双向长短时记忆网络 注意力机制 深度学习
年,卷(期) 2020,(24) 所属期刊栏目 理论与算法|Theory and Algorithms
研究方向 页码范围 57-63
页数 7页 分类号 TP27
字数 语种 中文
DOI 10.19651/j.cnki.emt.2005232
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (211)
共引文献  (481)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(8)
  • 参考文献(0)
  • 二级参考文献(8)
1998(7)
  • 参考文献(0)
  • 二级参考文献(7)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(10)
  • 参考文献(0)
  • 二级参考文献(10)
2013(12)
  • 参考文献(0)
  • 二级参考文献(12)
2014(14)
  • 参考文献(1)
  • 二级参考文献(13)
2015(17)
  • 参考文献(0)
  • 二级参考文献(17)
2016(26)
  • 参考文献(1)
  • 二级参考文献(25)
2017(24)
  • 参考文献(4)
  • 二级参考文献(20)
2018(25)
  • 参考文献(1)
  • 二级参考文献(24)
2019(20)
  • 参考文献(3)
  • 二级参考文献(17)
2020(5)
  • 参考文献(3)
  • 二级参考文献(2)
2020(5)
  • 参考文献(3)
  • 二级参考文献(2)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像处理
残差网络
双向长短时记忆网络
注意力机制
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量技术
半月刊
1002-7300
11-2175/TN
大16开
北京市东城区北河沿大街79号
2-336
1977
chi
出版文献量(篇)
9342
总下载数(次)
50
总被引数(次)
46785
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导