基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高稀疏栈式编码对车型识别确率,提出了一种基于改进稀疏栈式编码的车型识别方法.使用逐层无监督方法来训练网络结构,并从大量的无标记的数据集中学习得到特征字典,在稀疏栈式编码的基础上引入卷积和池化模块,把学习得到的特征字典作为卷积核,通过对含有车辆的图像进行卷积和池化操作获得图像的特征图;最后通过使用softmax分类器在少量标签数据集上进行有监督的微调.在BIT-Vehicle数据集上的实验结果表明,改进后的算法优于传统稀疏栈式编码算法,在标注较少的数据集中,识别的准确率优于神经网络算法.
推荐文章
基于栈式稀疏自编码器的有源欺骗干扰识别
欺骗干扰
干扰识别
时频分析
深度学习
栈式稀疏自编码器
采用稀疏SIFT特征的车型识别方法
深度学习
车型识别
稀疏特征
尺度不变转换特征
线性支持向量机分类
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
基于栈式稀疏降噪自编码网络的辐射源调制识别
辐射源识别
稀疏降噪自编码
时频特征
核映射
批量随机梯度下降法
dropout正则化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进稀疏栈式编码的车型识别
来源期刊 计算机工程与应用 学科 工学
关键词 车型识别 稀疏栈式编码 卷积 池化 特征字典
年,卷(期) 2020,(1) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 136-141
页数 6页 分类号 TP391
字数 3544字 语种 中文
DOI 10.3778/j.issn.1002-8331.1809-0101
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙伟 中国矿业大学信息与控制工程学院 105 523 13.0 17.0
2 代乾龙 中国矿业大学信息与控制工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (16)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(10)
  • 参考文献(3)
  • 二级参考文献(7)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(8)
  • 参考文献(2)
  • 二级参考文献(6)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车型识别
稀疏栈式编码
卷积
池化
特征字典
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导