基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的卷积神经网络用到的方法是在稀疏表示的超分辨率图像的基础上学习高/低分辨率图像之间端到端的映射,输入的是高分辨率的图像,输出的是低分辨率的图像,拥有三层卷积层的SRCNN虽然有一定的重建效果,但是感受野较低,因此,提出加深网络结构的方法,此次改进使得后面的网络层拥有更大的感受野,这样结果的像素点可以根据更多的像素点来推断.但是考虑到网络结构加深对传输速率的影响,通过引入局部残差学习和全局残差学习相结合的方法来提高学习率,通过该办法有效地加快了收敛速度,并且通过实验结果验证,与已有的Bicubic、SRCNN和VDSR相比,重建效果在峰值信噪比、结构相似性和视觉效果上均有所提升.
推荐文章
全局重建和位置块残差补偿的人脸图像超分辨率算法
人脸图像
超分辨率
残差补偿
位置块
基于MAP算法的图像超分辨率重建
超分辨率
图像重建
最大后验概率
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于亚像素的图像超分辨率重建算法研究
超分辨率重建
图像插值
亚像素
视觉效果
峰值信噪比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于残差网络的图像超分辨率重建算法
来源期刊 计算机工程与应用 学科 工学
关键词 卷积神经网络 图像超分辨率重建 残差网络
年,卷(期) 2020,(8) 所属期刊栏目 图形图像处理
研究方向 页码范围 185-191
页数 7页 分类号 TP391
字数 6859字 语种 中文
DOI 10.3778/j.issn.1002-8331.1901-0331
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘兵 中国矿业大学计算机科学与技术学院 37 274 11.0 15.0
3 周勇 中国矿业大学计算机科学与技术学院 85 984 16.0 29.0
6 陈晨 中国矿业大学计算机科学与技术学院 13 25 4.0 4.0
7 刘明明 江苏建筑职业技术学院智能制造学院 6 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (115)
共引文献  (129)
参考文献  (19)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(16)
  • 参考文献(1)
  • 二级参考文献(15)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(9)
  • 参考文献(2)
  • 二级参考文献(7)
2017(7)
  • 参考文献(2)
  • 二级参考文献(5)
2018(7)
  • 参考文献(5)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
图像超分辨率重建
残差网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
江苏省自然科学基金
英文译名:Natural Science Foundation of Jiangsu Province
官方网址:http://www.jsnsf.gov.cn/News.aspx?a=37
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导