基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高手写数字的识别率,论文提出了一种改进的全卷积神经网络手写图像识别方法。首先通过传统的卷积神经网络获取手写数字图像的轮廓特征,其次在模型训练的初始阶段,传统的修正线性单元(RELU)激活函数被指数线性单元(ELU)激活函数所代替,然后应用支持向量机(SVM)分类器替换原始卷积神经网络的多项逻辑回归(Softmax)分类器,并对输出的像素分类结果进行反卷积操作,从而获得分割结果。最后,使用提出的算法在MNIST数据集进行验证,与其他算法比较具有较高的识别精度。
推荐文章
基于改进卷积神经网络的手写数字识别
手写数字识别
卷积神经网络
SVM分类器
改进卷积神经网络的手写试卷分数识别方法
分数统计
数字识别
卷积神经网络
主成分分析
贝叶斯分类器
深度学习
基于形变卷积神经网络的手写体数字识别研究
手写体数字识别
卷积神经网络
形变卷积
基于卷积神经网络的藏文手写数字识别
藏文手写数字
数字识别
CNN
数据预处理
样本训练
自动识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的全卷积神经网络在手写数字识别上的应用
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 MNIST数据集 全卷积神经网络 ELU函数 手写识别 识别率
年,卷(期) 2020,(35) 所属期刊栏目
研究方向 页码范围 1-3
页数 3页 分类号 TP391
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘宝宝 5 4 2.0 2.0
2 杨雪 2 0 0.0 0.0
3 吴治虎 2 0 0.0 0.0
4 侯飞 2 0 0.0 0.0
5 穆姣 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MNIST数据集
全卷积神经网络
ELU函数
手写识别
识别率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
电脑知识与技术:学术版2020年第9期 电脑知识与技术:学术版2020年第8期 电脑知识与技术:学术版2020年第7期 电脑知识与技术:学术版2020年第6期 电脑知识与技术:学术版2020年第5期 电脑知识与技术:学术版2020年第4期 电脑知识与技术:学术版2020年第36期 电脑知识与技术:学术版2020年第35期 电脑知识与技术:学术版2020年第34期 电脑知识与技术:学术版2020年第33期 电脑知识与技术:学术版2020年第32期 电脑知识与技术:学术版2020年第31期 电脑知识与技术:学术版2020年第30期 电脑知识与技术:学术版2020年第3期 电脑知识与技术:学术版2020年第29期 电脑知识与技术:学术版2020年第28期 电脑知识与技术:学术版2020年第27期 电脑知识与技术:学术版2020年第26期 电脑知识与技术:学术版2020年第25期 电脑知识与技术:学术版2020年第24期 电脑知识与技术:学术版2020年第23期 电脑知识与技术:学术版2020年第22期 电脑知识与技术:学术版2020年第21期 电脑知识与技术:学术版2020年第20期 电脑知识与技术:学术版2020年第2期 电脑知识与技术:学术版2020年第19期 电脑知识与技术:学术版2020年第18期 电脑知识与技术:学术版2020年第17期 电脑知识与技术:学术版2020年第16期 电脑知识与技术:学术版2020年第15期 电脑知识与技术:学术版2020年第14期 电脑知识与技术:学术版2020年第13期 电脑知识与技术:学术版2020年第12期 电脑知识与技术:学术版2020年第11期 电脑知识与技术:学术版2020年第10期 电脑知识与技术:学术版2020年第1期
论文1v1指导