基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于垃圾邮件的数量的增长,对邮件进行分类已经成为亟待解决的问题。本文提出一种基于机器学习的中文邮件分类方法,采用朴素贝叶斯算法对邮件进行处理。实验结果表明,该方法对垃圾邮件判定结果的准确率较高。
推荐文章
基于Winnow的中文邮件分类器的设计
Winnow
中文邮件分类
中文邮件语料库
分类器
基于Winnow的中文邮件分类器的设计
Winnow
中文邮件分类
中文邮件语料库
分类器
基于改进贝叶斯模型的中文邮件分类算法
邮件分类
中文分词
最小风险
混合模型
贝叶斯
一种改进TF-IDF的中文邮件识别算法研究
TF-IDF算法
邮件识别
卡方统计量
权重分配
邮件分类
仿真分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器学习的中文邮件分类研究
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 机器学习 邮件分类 朴素贝叶斯
年,卷(期) 2020,(34) 所属期刊栏目
研究方向 页码范围 185-186
页数 2页 分类号 TP3
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李伟 21 20 3.0 3.0
2 羊巍 3 0 0.0 0.0
3 刘志芳 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器学习
邮件分类
朴素贝叶斯
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
电脑知识与技术:学术版2020年第9期 电脑知识与技术:学术版2020年第8期 电脑知识与技术:学术版2020年第7期 电脑知识与技术:学术版2020年第6期 电脑知识与技术:学术版2020年第5期 电脑知识与技术:学术版2020年第4期 电脑知识与技术:学术版2020年第36期 电脑知识与技术:学术版2020年第35期 电脑知识与技术:学术版2020年第34期 电脑知识与技术:学术版2020年第33期 电脑知识与技术:学术版2020年第32期 电脑知识与技术:学术版2020年第31期 电脑知识与技术:学术版2020年第30期 电脑知识与技术:学术版2020年第3期 电脑知识与技术:学术版2020年第29期 电脑知识与技术:学术版2020年第28期 电脑知识与技术:学术版2020年第27期 电脑知识与技术:学术版2020年第26期 电脑知识与技术:学术版2020年第25期 电脑知识与技术:学术版2020年第24期 电脑知识与技术:学术版2020年第23期 电脑知识与技术:学术版2020年第22期 电脑知识与技术:学术版2020年第21期 电脑知识与技术:学术版2020年第20期 电脑知识与技术:学术版2020年第2期 电脑知识与技术:学术版2020年第19期 电脑知识与技术:学术版2020年第18期 电脑知识与技术:学术版2020年第17期 电脑知识与技术:学术版2020年第16期 电脑知识与技术:学术版2020年第15期 电脑知识与技术:学术版2020年第14期 电脑知识与技术:学术版2020年第13期 电脑知识与技术:学术版2020年第12期 电脑知识与技术:学术版2020年第11期 电脑知识与技术:学术版2020年第10期 电脑知识与技术:学术版2020年第1期
论文1v1指导