摘要:
研究基于遥感影像的作物精确识别技术方法, 对获取作物分布信息具有重要意义。随机森林分类(random forest classification, RFC)是机器学习的一种, 本文使用Landsat-8 OLI卫星影像数据, 针对研究区内的大豆、玉米和其他地物等3种主要作物类型, 系统比较了该方法与较为成熟的最大似然分类(maximum likelihood classification, MLC)、支持向量机分类(support vector machine, SVM)方法的分类精度。结果表明, MLC、SVM、RFC的总体分类精度分别为91.68%、91.49%、94.32%, Kappa系数分别为0.87、0.87、0.91, RFC方法作物识别精度比MLC和SVM分类显著提升。对原始7波段影像进行主成分变换(principal component analysis, PCA), 提取前4个主成分分量, 同时计算归一化植被指数(normalized difference vegetation index, NDVI)和归一化水体指数(normalized difference water index, NDWI), 将6个额外辅助特征波段叠加到原始7个波段影像上进行再次分类, MLC和SVM方法作物识别精度未有提升, RFC方法总体精度提高了1.49个百分点, Kappa系数提高0.03, 精度提升幅度有限, 主要原因是6个辅助波段在类型识别中作用较小。在分类耗时上, MLC、SVM、RFC分别为145 s、11 000 s、1800 s, 表明随机森林分类具有最好的分类精度和适中的耗时。综合评价后, 随机森林分类方法在进行大豆-玉米精细识别中具有较大优势, 具有业务应用的潜力。