作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于轴承振动信号具有复杂性和非线性,难以有效提取故障特征,影响故障诊断的准确率.为了提高故障诊断准确率,提出一种蝙蝠算法(BA)优化相关向量机(RVM)的轴承故障诊断方法.首先结合变分模态分解和多尺度熵从轴承振动信号中提取出故障特征,作为相关向量机的输入向量;接着采用蝙蝠算法优化相关向量机的核函数参数;然后训练相关向量机模型;最后使用训练后的相关向量机进行故障诊断.通过仿真实验评估故障诊断方法的有效性,实验结果表明,该方法的故障诊断准确为100%,故障诊断准确率高于SVM方法、RVM方法,说明BA-RVM故障诊断方法是可行和有效的,满足一般轴承故障诊断的精度要求.
推荐文章
基于LCD互近似熵和相关向量机的轴承故障诊断方法
局部特征尺度分解
互近似熵
相关向量机
故障诊断
滚动轴承
蝙蝠算法优化极限学习机的滚动轴承故障分类
蝙蝠算法
极限学习机
无量纲指标
滚动轴承
故障诊断
基于粒子群算法优化支持向量机汽车故障诊断研究
粒子群算法
支持向量机
汽车故障诊断
遗传聚类
基于遗传算法和支持向量机的故障诊断方法
最小二乘支持向量机
自适应遗传算法
机载电气盒
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蝙蝠算法优化相关向量机的轴承故障诊断方法
来源期刊 自动化与仪器仪表 学科
关键词 轴承 故障诊断 相关向量机 蝙蝠算法
年,卷(期) 2021,(2) 所属期刊栏目 理论创新|THEORETICAL INNOVATION
研究方向 页码范围 21-24
页数 4页 分类号 TH133.33
字数 语种 中文
DOI 10.14016/j.cnki.1001-9227.2021.02.021
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (172)
共引文献  (39)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(15)
  • 参考文献(0)
  • 二级参考文献(15)
2013(17)
  • 参考文献(0)
  • 二级参考文献(17)
2014(21)
  • 参考文献(1)
  • 二级参考文献(20)
2015(20)
  • 参考文献(0)
  • 二级参考文献(20)
2016(19)
  • 参考文献(0)
  • 二级参考文献(19)
2017(18)
  • 参考文献(1)
  • 二级参考文献(17)
2018(9)
  • 参考文献(4)
  • 二级参考文献(5)
2019(7)
  • 参考文献(7)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
轴承
故障诊断
相关向量机
蝙蝠算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化与仪器仪表
月刊
1001-9227
50-1066/TP
大16开
重庆市渝北区人和杨柳路2号B区
78-8
1981
chi
出版文献量(篇)
9657
总下载数(次)
37
总被引数(次)
30777
论文1v1指导