基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于图神经网络的视频推荐模型,将用户的视频观看序列型行为建模为图结构,用结点代表用户与视频,用边代表行为,引入两种类型的向量传播方法分别对用户的长期兴趣与短时兴趣进行建模.其中,通过用户结点与视频结点的双向传播刻画长期兴趣,借助视频结点切换关系的单向传播刻画短时兴趣,并通过多层向量传播实现对图上高阶邻接信息的捕捉.在一个真实世界的视频网站观看数据集上的实验表明,提出的方法与现有最佳方法相比,其推荐精准度得到了有效提升.进一步的实验表明,该方法能够有效缓解数据稀疏性的问题.
推荐文章
基于记忆的注意力图神经网络专家推荐方法
专家推荐
图神经网络
记忆网络
注意力机制
基于神经网络的模糊认知图的演化研究
模糊认知图
神经网络
遗传算法
演化计算
基于3D卷积神经网络的视频哈希算法
深度学习
哈希算法
视频检索
图神经网络推荐研究进展
图神经网络
推荐系统
深度学习
实体联系
社交关系
协同过滤
无向图
有向图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图神经网络的视频推荐系统
来源期刊 中兴通讯技术 学科
关键词 视频推荐系统 用户兴趣建模 图神经网络 深度学习
年,卷(期) 2021,(1) 所属期刊栏目 专题:视频技术和用户体验评测|Special Topic:Video Technologies and QoE Estimation
研究方向 页码范围 27-32
页数 6页 分类号
字数 语种 中文
DOI 10.12142/ZTETJ.202101007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (457)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(8)
  • 参考文献(0)
  • 二级参考文献(8)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频推荐系统
用户兴趣建模
图神经网络
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中兴通讯技术
双月刊
1009-6868
34-1228/TN
大16开
合肥市金寨路329号凯旋大厦12楼
1995
chi
出版文献量(篇)
2060
总下载数(次)
1
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导