作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的法庭说话人识别方法存在对语音数据建模能力差、特征提取难以及容易受噪声干扰影响等问题,为了改进这些问题,提出一种基于卷积神经网络的法庭说话人识别方法.该方法以AlexNet网络为基础进行参数调整,为了弥补ReLU函数作为激活函数时易出现神经元坏死和偏移的现象,融合Tanh和ReLU函数的特性,构造一种新的TR函数作为网络的激活函数.同时,为了避免人工提取语音特征的主观性和不全面性,在实验中将语音转换成声纹图作为网络输入.实验结果表明,激活函数为TR函数时,该方法在法庭说话人识别数据集的准确率达到了92.24%,在花朵图像公开数库的准确率达到了96.13%,效果均好于Tanh和ReLU函数.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
关联小波神经网络与高斯混合模型说话人识别
信号处理
语音识别
说话人识别
小波神经网络
高斯混合模型
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的法庭说话人识别研究
来源期刊 电声技术 学科
关键词 卷积神经网络 法庭说话人识别 激活函数 声纹图
年,卷(期) 2021,(2) 所属期刊栏目 语音技术|Voice Technology
研究方向 页码范围 23-27,31
页数 6页 分类号 TP391.41
字数 语种 中文
DOI 10.16311/j.audioe.2021.02.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
法庭说话人识别
激活函数
声纹图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电声技术
月刊
1002-8684
11-2122/TN
大16开
北京市朝阳区酒仙桥北路乙7号
2-355
1977
chi
出版文献量(篇)
6327
总下载数(次)
24
论文1v1指导