基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
AIM:To develop a classifier for differentiating between healthy and early stage glaucoma eyes based on peripapillary retinal nerve fiber layer(RNFL)thicknesses measured with optical coherence tomography(OCT),using machine learning algorithms with a high interpretability.METHODS:Ninety patients with early glaucoma and 85 healthy eyes were included.Early glaucoma eyes showed a visual field(VF)defect with mean deviation>-6.00 d B and characteristic glaucomatous morphology.RNFL thickness in every quadrant,clock-hour and average thickness were used to feed machine learning algorithms.Cluster analysis was conducted to detect and exclude outliers.Tree gradient boosting algorithms were used to calculate the importance of parameters on the classifier and to check the relation between their values and its impact on the classifier.Parameters with the lowest importance were excluded and a weighted decision tree analysis was applied to obtain an interpretable classifier.Area under the ROC curve(AUC),accuracy and generalization ability of the model were estimated using cross validation techniques.RESULTS:Average and 7 clock-hour RNFL thicknesses were the parameters with the highest impor tance.Correlation between parameter values and impact on classification displayed a stepped pattern for average thickness.Decision tree model revealed that average thickness lower than 82μm was a high predictor for early glaucoma.Model scores had AUC of 0.953(95%CI:0.903-0998),with an accuracy of 89%.CONCLUSION:Gradient boosting methods provide accurate and highly interpretable classifiers to discriminate between early glaucoma and healthy eyes.Average and 7-hour RNFL thicknesses have the best discriminant power.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Age and geochemistry of Early Ordovician A-type granites in the Northeastern Songnen Block, NE China
Early Ordovician
A-type granite
Songnen and Xing'an blocks
Geodynamic setting
GRMP协议中Classifier动态加载的实现
ForCES
GRMP
分类器
模块
软中断
Thermodynamic properties of San Carlos olivine at high temperature and high pressure
San Carlos olivine
Thermodynamic property
Thermal expansion
Heat capacity
Temperature gradient
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 High interpretable machine learning classifier for early glaucoma diagnosis
来源期刊 国际眼科杂志:英文版 学科 工学
关键词 machine learning GLAUCOMA DIAGNOSIS optical coherence tomography
年,卷(期) 2021,(3) 所属期刊栏目
研究方向 页码范围 393-398
页数 6页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
machine
learning
GLAUCOMA
DIAGNOSIS
optical
coherence
tomography
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际眼科杂志:英文版
月刊
2222-3959
西安市友谊东路269号
出版文献量(篇)
2720
总下载数(次)
2
论文1v1指导