基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对RH流程终点钢温预报问题,提出了一种基于多元线性回归和粒子群优化算法改良的案例推理方法.首先,对待一般案例推理方法中缺乏影响因素的问题,利用多元线性回归的方法进行属性约简;其次,面对案例检索中相似度计算缺乏权重计算方法的问题,采用粒子群优化算法对权值进行优化;最后,基于简化的影响因素和优化权重,采用改进的灰色关联相似性的案例检索来预测RH终点的钢水温度.利用某钢铁厂RH工艺的实际生产数据,分别对多元线性回归、BP神经网络、一般案例推理方法和粒子群优化案例推理方法进行测试,从结果可以看出,文中所使用的基于粒子群优化过的案例推理方法的预报精度,相较于多元线性回归,BP神经网络以及一般案例推理更加准确.
推荐文章
基于改进粒子群优化算法的预测控制
预测控制
标准粒子群优化
参数优化
多变量
耦合
基于粒子群优化支持向量机的建筑室内温度预测模型
室内温度
楼宇阀门
支持向量机
粒子群优化算法
基于粒子群优化神经网络的卫星故障预测方法
故障预测
卫星
粒子群优化
神经网络
时间序列
基于聚类的多子群粒子群优化算法
粒子群优化算法
聚类
子群
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化案例推理的RH终点温度预测
来源期刊 仪表技术与传感器 学科 工学
关键词 粒子群优化算法 多元线性回归 RH真空精炼过程 案例推理 智慧炼钢 钢温预报
年,卷(期) 2021,(1) 所属期刊栏目 研究与开发
研究方向 页码范围 107-112
页数 6页 分类号 TF769
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (85)
共引文献  (46)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(18)
  • 参考文献(5)
  • 二级参考文献(13)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(11)
  • 参考文献(2)
  • 二级参考文献(9)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(5)
  • 参考文献(3)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群优化算法
多元线性回归
RH真空精炼过程
案例推理
智慧炼钢
钢温预报
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪表技术与传感器
月刊
1002-1841
21-1154/TH
大16开
沈阳市大东区北海街242号
8-69
1964
chi
出版文献量(篇)
7929
总下载数(次)
16
论文1v1指导