基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Driven by the increasing requirements of high-performance computing applications,supercomputers are prone to containing more and more computing nodes.Applications running on such a large-scale computing system are likely to spawn millions of parallel processes,which usually generate a burst of I/O requests,introducing a great challenge into the metadata management of underlying parallel file systems.The traditional method used to overcome such a challenge is adopting multiple metadata servers in the scale-out manner,which will inevitably confront with serious network and consistence problems.This work instead pursues to enhance the metadata performance in the scale-up manner.Specifically,we propose to improve the performance of each individual metadata server by employing GPU to handle metadata requests in parallel.Our proposal designs a novel metadata server architecture,which employs CPU to interact with file system clients,while offloading the computing tasks about metadata into GPU.To take full advantages of the parallelism existing in GPU,we redesign the in-memory data structure for the name space of file systems.The new data structure can perfectly fit to the memory architecture of GPU,and thus helps to exploit the large number of parallel threads within GPU to serve the bursty metadata requests concurrently.We implement a prototype based on BeeGFS and conduct extensive experiments to evaluate our proposal,and the experimental results demonstrate that our GPU-based solution outperforms the CPU-based scheme by more than 50%under typical metadata operations.The superiority is strengthened further on high concurrent scenarios,e.g.,the high-performance computing systems supporting millions of parallel threads.
推荐文章
Metadata机制研究
Metadata
Meta演算
Web深度计算
MetaManager
The morphological characteristics of gully systems and watersheds in Dry-Hot Valley, SW China
Morphological characteristics
Quantitative relationships
Gully system
Watershed
Dry-Hot Valley
Protection of Large-scale Wind Power Integration
风力发电
常规保护
一体化
电力电子器件
风力涡轮机
电力系统
波动特性
仿真结果
Distribution and partitioning of heavy metals in large anthropogenically impacted river, the Pearl R
Pearl River
Water and sediment
Heavy metals
Partitioning
Distribution
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A GPU-Accelerated In-Memory Metadata Management Scheme for Large-Scale Parallel File Systems
来源期刊 计算机科学技术学报(英文版) 学科
关键词
年,卷(期) 2021,(1) 所属期刊栏目 Special Section on Memory-Centric System Research for High-Performance Computing
研究方向 页码范围 44-55
页数 12页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (17)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学技术学报(英文版)
双月刊
1000-9000
11-2296/TP
16开
北京中关村科学院南路6号 《计算机科学技术学报(英)》编辑部
1986
eng
出版文献量(篇)
2207
总下载数(次)
1
总被引数(次)
12378
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导