基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
变压器故障诊断正确率取决于诊断模型的构建、特征参量的选取以及故障类型数据的丰富,模型参数的调整也变得尤为重要.针对依据经验调整参数导致随机森林模型诊断变压器故障正确率不够高的问题,提出了基于粒子群优化随机森林(PSO-RF)的故障诊断方法.以油中溶解气体的无编码比值构成特征参量作为模型输入,通过PSO算法搜索RF模型的两个最优参数(子树棵数和分裂特征数),建立PSO-RF模型诊断故障类别,并与不同特征参量选择方法和不同模型进行对比分析.运用两个具体实例的诊断结果来验证所提诊断模型和特征选取的有效性.结果 表明:以无编码比值作为特征参量能挖掘更多的故障信息,并且PSO-RF模型故障诊断正确率优于SVM、BPNN与RF模型,随着样本空间的增大,故障诊断模型的效果越好.
推荐文章
基于改进粒子群优化XGBoost的变压器故障诊断方法
变压器
故障诊断
极端梯度提升
粒子群算法
无编码比值
基于组合核相关向量机和量子粒子群优化算法的变压器故障诊断方法
变压器
故障诊断
量子粒子群优化
相关向量机
组合核函数
基于改进粒子群优化T-S ANFIS算法的诊断油浸式变压器故障研究
油浸式变压器
改进粒子群
自适应模糊神经网络
故障诊断
算法优化
基于DGA支持向量机的变压器故障诊断
DGA
支持向量机
变压器
故障诊断
参数优化
SVM模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化随机森林的变压器故障诊断模型
来源期刊 昆明理工大学学报(自然科学版) 学科
关键词 变压器 故障诊断 随机森林 粒子群优化 无编码比值
年,卷(期) 2021,(3) 所属期刊栏目 能源科学与电力工程|Energy Science and Power Engineering
研究方向 页码范围 94-101
页数 8页 分类号 TM41
字数 语种 中文
DOI 10.16112/j.cnki.53-1223/n.2021.03.451
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (154)
共引文献  (126)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(22)
  • 参考文献(2)
  • 二级参考文献(20)
2016(20)
  • 参考文献(2)
  • 二级参考文献(18)
2017(21)
  • 参考文献(1)
  • 二级参考文献(20)
2018(14)
  • 参考文献(2)
  • 二级参考文献(12)
2019(18)
  • 参考文献(3)
  • 二级参考文献(15)
2020(3)
  • 参考文献(2)
  • 二级参考文献(1)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变压器
故障诊断
随机森林
粒子群优化
无编码比值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
昆明理工大学学报(自然科学版)
双月刊
1007-855/X
53-1123/T
大16开
云南省昆明市呈贡区景明南路727号
64-79
1959
chi
出版文献量(篇)
3434
总下载数(次)
7
总被引数(次)
25009
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导