基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
We consider the efficacy of a proposed linear-dimension-reduction method to potentially increase the powers of five hypothesis tests for the difference of two high-dimensional multivariate-normal population-mean vectors with the assumption of homoscedastic covariance matrices. We use Monte Carlo simulations to contrast the empirical powers of the five high-dimensional tests by using both the original data and dimension-reduced data. From the Monte Carlo simulations, we conclude that a test by Thulin [1], when performed with post-dimension-reduced data, yielded the best omnibus power for detecting a difference between two high-dimensional population-mean vectors. We also illustrate the utility of our dimension-reduction method real data consisting of genetic sequences of two groups of patients with Crohn’s disease and ulcerative colitis.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Dimension Reduction for Detecting a Difference in Two High-Dimensional Mean Vectors
来源期刊 统计学期刊(英文) 学科 医学
关键词 Homoscedastic Covariance Matrices Test Power Monte Carlo Simulation Moore-Penrose Inverse Singular Value Decomposition
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 243-257
页数 15页 分类号 R57
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Homoscedastic
Covariance
Matrices
Test
Power
Monte
Carlo
Simulation
Moore-Penrose
Inverse
Singular
Value
Decomposition
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导