基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
铁水硅含量是炉缸热制度的化学热表示方式,也是表征炉温和铁水质量的重要参数.选取某钢铁厂4号高炉实时数据库和检化验数据库2019年的30个输入参数,通过数据处理和特征值筛选,最终选取17个参数进行模型预测,共计8760组.通过构建Adaboost模型、决策树模型和随机森林模型对2 h后的铁水中硅含量进行预测,发现Adaboost模型预测的结果相比决策树模型和随机森林模型准确度更高,学习效果更是明显占优,能够更好地对铁水硅含量进行捕捉预测.
推荐文章
基于数据的高炉铁水硅含量预测
硅含量
差分进化
极限学习机
高炉
数据
基于bootstrap的高炉铁水硅含量预测
高炉
bootstrap
预测区间
可信度
基于k-means++的高炉铁水硅含量数据优选方法
预测
动态建模
神经网络
高炉炼铁
铁水硅含量
数据优选
k-means++
深度学习
高炉铁水硅含量序列的支持向量机预测模型
自回归AR(p)模型
主成分分析
支持向量机
炉温预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于大数据技术的高炉铁水硅含量预测
来源期刊 中国冶金 学科
关键词 铁水硅含量 Adaboost模型 决策树模型 随机森林模型 大数据
年,卷(期) 2021,(2) 所属期刊栏目 专题研究
研究方向 页码范围 10-16
页数 7页 分类号
字数 语种 中文
DOI 10.13228/j.boyuan.issn1006-9356.20200391
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (162)
共引文献  (62)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(8)
  • 参考文献(0)
  • 二级参考文献(8)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(21)
  • 参考文献(2)
  • 二级参考文献(19)
2016(17)
  • 参考文献(2)
  • 二级参考文献(15)
2017(12)
  • 参考文献(0)
  • 二级参考文献(12)
2018(17)
  • 参考文献(4)
  • 二级参考文献(13)
2019(5)
  • 参考文献(3)
  • 二级参考文献(2)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
铁水硅含量
Adaboost模型
决策树模型
随机森林模型
大数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国冶金
月刊
1006-9356
11-3729/TF
大16开
北京东城区东四西大街46号
1991
chi
出版文献量(篇)
3537
总下载数(次)
5
总被引数(次)
16455
论文1v1指导